COLD冷融合:不确定性感知多模态情绪识别的校准和顺序潜在分布融合

论文标题:COLD Fusion: Calibrated and Ordinal Latent Distribution Fusion for Uncertainty-Aware Multimodal Emotion Recognition

中文译名:不确定性感知多模态情绪识别的校准和顺序潜在分布融合

原文地址:https://ieeexplore.ieee.org/abstract/document/10287630/


背景:

深度神经网络(DNNs)已广泛应用于多模态情感识别[8],[9],[10],[11],但估计模态不确定性以提高融合性能是一个相对未被探索的途径。然而,近年来,dnn中预测不确定性(或与其相反的置信度)的建模受到了广泛关注[12],[13],[14],其动机是观察到dnn倾向于做出过度自信的预测[15],[16]。大多数针对深度神经网络中不确定性或置信度估计的现有努力[13],[17]仅关注于减少误校准误差,即预期模型估计误差与其相应置信度评分之间的不匹配。最近,作为另一种观点,Moon等人[18]引入了学习对置信度评分进行排序的想法,以确定最可靠的预测。

在这项工作中,我们认为,估计的不确定性分数必须同时校准和排序良好(序数)。前者需要准确地表示单个样本预测的正确性可能性。后者对于根据一组样本的正确可能性有效地排序预测至关重要。换句话说,如果

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值