RAG工作流详解---ChatGPT4o作答

RAG工作流(Retrieval-Augmented Generation Workflow)是一种结合信息检索(retrieval)与自然语言生成(generation)技术的工作流程。其核心思想是在生成模型(如GPT)生成文本时,通过从外部知识库或数据源检索相关信息,增强模型的生成能力。这种方法能够提高模型的准确性、丰富性和上下文相关性,广泛应用于问答系统、对话系统、文本生成等任务。

RAG 工作流的工作原理是通过以下几个步骤将信息检索和生成相结合。具体来说,RAG工作流分为检索阶段生成阶段,并且这两个阶段密切配合,共同提升文本生成的质量和相关性。

RAG工作流的步骤

1. 输入问题或任务描述(Query/Input)
  • 用户提供一个问题或任务的描述。例如,“什么是量子计算?”或“生成一篇关于气候变化的文章”。
  • 输入内容是整个RAG流程的核心,所有后续的检索和生成步骤都基于这个输入。
2. 信息检索阶段(Retrieval)
  • 在这一阶段,系统通过检索外部数据库或知识库,找到与输入问题或任务相关的信息。这一步骤通常是通过以下几种方法来实现:
    • 基于关键词的检索:传统的基于关键词的检索方法,通过输入查询中的关键词在数据库或文档库中找到相关文本。
    • 基于语义的检索:使用语义相似度模型(如 BERT、Sentence-BERT)来计算输入查询与文档库中文本的相似度,从而找到相关文档或片段。这种方法比基于关键词的检索更具上下文感知能力。
    • 基于向量的检索:通过将文本数据转化为向量表示(如使用预训练的语言模型生成向量),利用向量相似度(如余弦相似度)来找到与查询相关的文档。常见的向量检索库有 FAISS、ElasticSearch 等。

在检索阶段,系统返回一组相关的文档、段落或片段,作为后续生成阶段的参考。

3. 信息融合与预处理(Fusion and Preprocessing)
  • 检索到的相关信息需要进行处理和整合,以便与用户输入的查询结合使用。这可能包括:
    • 选择相关片段:从检索结果中选择最相关的信息段落、句子或词汇,这一步通常会依据查询的上下文来进行筛选。
    • 文本摘要:对于检索到的长文本,可能需要进行摘要生成,以便只提取最关键的信息。这可以通过自动摘要模型或简单的文本提取方法实现。
    • 信息拼接:将检索到的文档内容与用户的查询合并,形成一个“增强型”输入,准备送入生成模型中进行生成。
4. 生成阶段(Generation)
  • 生成模型(如 GPT、T5、BART 等)接收到经过融合和处理的输入后,会开始生成目标文本。这个阶段的关键是使用检索到的信息增强生成模型的输出,确保生成的文本更加符合真实情况、丰富且有用。
    • 生成模型的输入:生成模型的输入通常包括:
      • 用户的原始查询。
      • 检索到的相关信息(如从数据库、文档库中获得的文本片段)。
      • 通过融合与预处理阶段整理过的信息。
    • 生成文本:生成模型根据输入内容开始生成文本。对于问答系统,这可能是一个答案;对于文本生成任务,这可能是一篇文章或报告。

在这一阶段,生成模型会尽可能地利用外部检索到的信息,增强其生成文本的质量和相关性。与传统的生成模型不同,RAG模型能够基于实时的外部信息生成更准确、具体的回答或内容。

5. 输出生成结果(Output)
  • 生成模型的输出是最终的结果,通常是基于查询和检索到的信息生成的文本。例如,系统可能生成一个完整的答案、一段解释、一篇文章,或者一条对话回应。
  • 输出的质量直接受检索阶段和生成阶段的影响。良好的检索结果可以极大地提升生成的文本质量。
6. 后处理(Post-processing)
  • 在生成阶段之后,有时需要对生成的文本进行进一步的后处理。这可能包括:
    • 文本清理:去除冗余的内容、拼写错误或语法问题。
    • 格式化:根据任务需求对输出文本进行格式化,如将文章分段、添加标题等。
    • 合规性检查:对于特定领域(如医学、法律等)的生成任务,可能需要进行合规性检查,确保生成的内容符合相关标准。

RAG 工作流的优势

  1. 增强知识广度

    • 生成模型本身通常只依赖其训练数据中的知识,而通过检索外部知识,RAG模型能够在生成过程中利用最新的、领域特定的知识,提高输出的准确性和相关性。
  2. 实时知识获取

    • 通过检索,RAG能够实时获取特定任务或问题所需的最新信息,不依赖于模型的静态知识库。这对于处理时效性强的问题(如新闻摘要、实时问答等)非常重要。
  3. 减少模型知识局限

    • 传统的生成模型在面对专业领域的复杂问题时,可能会由于知识库的限制而输出错误或不相关的信息。RAG通过将检索到的外部知识与生成相结合,可以减少这种局限性。
  4. 提高生成质量

    • 通过增强信息来源,RAG能够帮助生成模型更好地理解查询的上下文,减少生成错误或偏差,特别是在长文本生成或复杂问题解答时。

RAG 工作流的应用场景

  1. 问答系统

    • RAG非常适合用于问答系统,特别是在面对知识库或外部文档的复杂查询时。通过检索相关文档并将其与用户查询结合,生成更具参考价值的回答。
  2. 对话系统

    • 在对话系统中,RAG可以帮助生成更自然且符合上下文的对话回应,特别是需要依赖实时信息或特定领域知识的场景。
  3. 文本生成与摘要

    • RAG也可用于基于检索到的信息生成文章、报告或技术文档。例如,基于已有的技术文章,RAG可以生成一个相关领域的文章摘要或完整的技术文档。
  4. 智能客服

    • RAG可以用于智能客服系统,通过检索企业的常见问题解答、产品文档等内容,生成更有针对性的客户支持答案。

RAG工作流的挑战与改进方向

  1. 检索质量

    • RAG的效果在很大程度上依赖于检索阶段的准确性。如果检索到的信息不相关或错误,生成模型的输出也会受到影响。因此,提高检索的精确度和相关性至关重要。
  2. 信息融合

    • 如何有效融合检索到的信息和用户输入,确保生成模型能正确理解并使用这些信息,是RAG的一个技术挑战。
  3. 计算资源与效率

    • RAG涉及信息检索和生成两个阶段,这可能导致较高的计算开销,尤其是在面对大规模文档库时。如何优化计算资源和提升效率,是一个需要关注的问题。
  4. 跨模态检索

    • 在多模态任务中(如图文混合),如何在检索阶段同时处理文本、图像等不同模态的信息,并有效结合到生成模型中,是RAG面临的新挑战。

总结

RAG工作流通过将检索和生成相结合,提供了一种更加灵活和高效的方式来增强生成模型的输出。通过从外部知识库获取相关信息,RAG不仅弥补了生成模型的知识局限,还能够实时提供领域特定的信息,确保生成的内容更加准确、丰富和相关。随着检索技术和生成模型的不断进步,RAG将在更多实际应用中发挥重要作用。

### 配置 GLM4-9B 模型用于 RAG 实现 为了使 GLM4-9B 模型能够支持检索增强生成 (Retrieval-Augmented Generation, RAG),需要完成几个关键步骤来集成检索模块并调整模型输入输出流程。 #### 1. 准备环境与依赖项安装 确保已经成功部署了 GLM4-9B Chat 模型,并且可以正常工作。这通常涉及设置 Python 环境以及必要的库文件,如 `transformers` 和其他辅助工具[^1]。 ```bash pip install transformers datasets faiss-cpu torch ``` #### 2. 下载预训练模型 如果尚未下载模型,则可以通过执行特定命令来进行: ```bash python /root/autodl-tmp/download-model.py ``` 此过程可能耗时较长,因为模型体积较大(约 18GB),预计下载时间为 10 至 20 分钟不等[^2]。 #### 3. 构建索引数据库 对于 RAG 来说,构建一个高效的文档或片段存储系统至关重要。这里推荐使用 FAISS 或类似的向量相似度搜索引擎创建索引结构。该索引将保存大量文本数据供后续查询使用。 ```python from sentence_transformers import SentenceTransformer, util import faiss import numpy as np # 加载编码器模型 encoder_model = SentenceTransformer('all-MiniLM-L6-v2') # 假设已有待索引的数据列表 corpus_texts corpus_embeddings = encoder_model.encode(corpus_texts) # 初始化FAISS索引 dimension = len(corpus_embeddings[0]) index = faiss.IndexFlatIP(dimension) faiss.normalize_L2(corpus_embeddings) index.add(corpus_embeddings) ``` #### 4. 修改推理逻辑以包含检索功能 为了让 GLM4-9B 能够利用外部知识源,在原有基础上扩展其输入机制,使其能够在每次预测前先进行一次快速的信息检索操作。具体来说就是在调用模型之前加入一段代码用来获取最相关的几条记录作为上下文补充给定提示词。 ```python def retrieve_relevant_documents(query_text, top_k=5): query_embedding = encoder_model.encode([query_text], convert_to_tensor=True) hits = util.semantic_search(query_embedding, corpus_embeddings, top_k=top_k)[0] retrieved_docs = [corpus_texts(hit['corpus_id']) for hit in hits] return "\n".join(retrieved_docs) def generate_with_rag(prompt, model, tokenizer): context = retrieve_relevant_documents(prompt) full_input = f"{context}\n{prompt}" inputs = tokenizer(full_input, return_tensors="pt").to(model.device) outputs = model.generate(**inputs) generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) return generated_text ``` 通过上述方法,GLM4-9B 就可以在保持原有对话能力的同时获得来自外部资源的支持,从而更好地理解和回应复杂问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值