目录
前言
本文将为大家分析数据在内存中究竟是怎样存储的
一、数据类型介绍
char //字符数据类型
short //短整型
int //整形
long //长整型
long long //更长的整形 C99
float //单精度浮点数
double //双精度浮点数
类型的意义:
1. 使用这个类型开辟内存空间的大小(大小决定了使用范围)。
2. 如何看待内存空间的视角。
1.类型的基本归类
整形家族:
char
unsigned char
signed char //char=unsigned char 还是 signed char 取决于编译器
short
unsigned short [int]
signed short [int]
int
unsigned int
signed int
long
unsigned long [int]
signed long [int]
浮点数家族:
float
double
构造类型:
> 数组类型
> 结构体类型 struct
> 枚举类型 enum
> 联合类型 union
指针类型:
int *pi;
char *pc;
float* pf;
void* pv;
空类型:
void 表示空类型(无类型)
通常应用于函数的返回类型、函数的参数、指针类型。
二、整形在内存中的存储
1.原码、反码、补码
计算机中的整数有三种表示方法,即原码、反码和补码。
三种表示方法均有
符号位
和
数值位
两部分,符号位都是用
0
表示
“
正
”
,用
1
表示
“
负
”
,而数值位
负整数的三种表示方法各不相同。
原码
直接将二进制按照正负数的形式翻译成二进制就可以。
反码
将原码的符号位不变,其他位依次按位取反就可以得到了。
补码
反码+1就得到补码
正数的原、反、补码都相同。
对于整形来说:数据存放内存中其实存放的是补码。
2.大小端介绍
什么大端小端:
大端(存储)模式,是指数据的低位保存在内存的高地址中,而数据的高位,保存在内存的低地址
中;
小端(存储)模式,是指数据的低位保存在内存的低地址中,而数据的高位,,保存在内存的高地
址中。
为什么有大端和小端:
为什么会有大小端模式之分呢?这是因为在计算机系统中,我们是以字节为单位的,每个地址单元都对应着一个字节,一个字节为8bit。但是在C语言中除了8 bit的char之外,还有16 bit的short型,32 bit的long型(要看具体的编译器),另外,对于位数大于8位的处理器,例如16位或者32位的处理器,由于寄存器宽度大于一个字节,那么必然存在着一个如何将多个字节安排的问题。因此就导致了大端存储模式和小端存储模式。
例如:一个 16bit 的 short 型 x ,在内存中的地址为 0x0010 , x 的值为 0x1122 ,那么 0x11 为高字节, 0x22 为低字节。对于大端模式,就将 0x11 放在低地址中,即 0x0010 中, 0x22 放在高地址中,即 0x0011 中。小端模式,刚好相反。我们常用的 X86 结构是小端模式,而 KEIL C51 则为大端模式。很多的ARM,DSP都为小端模式。有些ARM处理器还可以由硬件来选择是大端模式还是小端模式
三、浮点型在内存中的存储
1. 一个例子
浮点数存储的例子:
int main()
{
int n = 9;
float *pFloat = (float *)&n;
printf("n的值为:%d\n",n);
printf("*pFloat的值为:%f\n",*pFloat);
*pFloat = 9.0;
printf("num的值为:%d\n",n);
printf("*pFloat的值为:%f\n",*pFloat);
return 0;
}
输出的结果是:
2.浮点数存储规则
num 和 *pFloat 在内存中明明是同一个数,为什么浮点数和整数的解读结果会差别这么大?
要理解这个结果,一定要搞懂浮点数在计算机内部的表示方法。
根据国际标准IEEE(电气和电子工程协会) 754,任意一个二进制浮点数V可以表示成下面的形式:
-
(-1)^S * M * 2^E
-
(-1)^s表示符号位,当s=0,V为正数;当s=1,V为负数。
-
M表示有效数字,大于等于1,小于2。
-
2^E表示指数位。
举例来说:
十进制的5.0,写成二进制是 101.0 ,相当于 1.01×2^2 。
那么,按照上面V的格式,可以得出s=0,M=1.01,E=2。
十进制的-5.0,写成二进制是 -101.0 ,相当于 -1.01×2^2 。那么,s=1,M=1.01,E=2。
IEEE 754
规定:
对于32位的浮点数,最高的1位是符号位s,接着的8位是指数E,剩下的23位为有效数字M
对于
64
位的浮点数,最高的
1
位是符号位
S
,接着的
11
位是指数
E
,剩下的
52
位为有效数字
M
。
IEEE 754
对有效数字
M
和指数
E
,还有一些特别规定。
前面说过,
1≤M<2
,也就是说,
M
可以写成
1.xxxxxx
的形式,其中
xxxxxx
表示小数部分。
IEEE 754
规定,在计算机内部保存
M
时,默认这个数的第一位总是
1
,因此可以被舍去,只保存后面的
xxxxxx
部分。比如保存
1.01
的时
候,只保存
01
,等到读取的时候,再把第一位的
1
加上去。这样做的目的,是节省
1
位有效数字。以
32
位
浮点数为例,留给
M
只有
23
位,
将第一位的
1
舍去以后,等于可以保存
24
位有效数字。
至于指数
E
,情况就比较复杂。
首先,
E
为一个无符号整数(
unsigned int
)
这意味着,如果
E
为
8
位,它的取值范围为
0~255
;如果
E
为
11
位,它的取值范围为
0~2047
。但是,我们
知道,科学计数法中的
E
是可以出
现负数的,所以
IEEE 754
规定,存入内存时
E
的真实值必须再加上一个中间数,对于
8
位的
E
,这个中间数
是
127
;对于
11
位的
E
,这个中间
数是
1023
。比如,
2^10
的
E
是
10
,所以保存成
32
位浮点数时,必须保存成
10+127=137
,即
10001001
。
然后,指数
E
从内存中取出还可以再分成三种情况:
E
不全为
0
或不全为
1
这时,浮点数就采用下面的规则表示,即指数E的计算值减去127(或1023),得到真实值,再将
有效数字M前加上第一位的1。
比如:
0.5(1/2)的二进制形式为0.1,由于规定正数部分必须为1,即将小数点右移1位,则为
1.0*2^(-1),其阶码为-1+127=126,表示为
01111110,而尾数1.0去掉整数部分为0,补齐0到23位00000000000000000000000,则其二进
制表示形式为:0 01111110 00000000000000000000000
E
全为
0
这时,浮点数的指数E等于1-127(或者1-1023)即为真实值,
有效数字M不再加上第一位的1,而是还原为0.xxxxxx的小数。这样做是为了表示±0,以及接近于
0的很小的数字。
E
全为
1
这时,如果有效数字M全为0,表示±无穷大(正负取决于符号位s);
好了,关于浮点数的表示规则,就说到这里。
解释前面的题目:
下面,让我们回到一开始的问题:为什么
0x00000009
还原成浮点数,就成了
0.000000
?
首先,将 0x00000009 拆分,得到第一位符号位s=0,后面8位的指数 E=00000000 ,最后23位的有效数
字M=000 0000 0000 0000 0000
1001
9 -> 0000 0000 0000 0000 0000 0000 0000 1001
由于指数
E
全为
0
,所以符合上一节的第二种情况。因此,浮点数
V
就写成:
V=(
-
1)^0 × 0.00000000000000000001001×2^(
-
126)=1.001×2^(
-
146)
显然,
V
是一个很小的接近于
0
的正数,所以用十进制小数表示就是
0.000000
。
再看例题的第二部分。
请问浮点数
9.0
,如何用二进制表示?还原成十进制又是多少?
首先,浮点数
9.0
等于二进制的
1001.0
,即
1.001×2^3
9.0
->
1001.0
->
(
-
1
)
^01
.
0012
^3
->
s
=
0
,
M
=
1.001
,
E
=
3
+
127
=
130
那么,第一位的符号位
s=0
,有效数字
M
等于
001
后面再加
20
个
0
,凑满
23
位,指数
E
等于
3+127=130
,
即
10000010
。
所以,写成二进制形式,应该是
s+E+M
,即
0 10000010 001 0000 0000 0000 0000 0000
这个
32
位的二进制数,还原成十进制,正是
1091567616
。
总结
本文讲了数据在内存中的存储