代码随想录的第一天打卡,自己的第三天

代码随想录的第一天打卡,自己的第三天

一、学习目标

  1. 掌握二分法
  2. 掌握双指针法

二、学习内容

1. 双指针法

1.1. 同向双指针
1.1.1. 链表的快慢指针
  • 本章尚未涉及
1.1.2. 移动元素类
  • 核心就是用慢指针记录当前位置,把非目标值前移,目标值后移
  • 类似的题目:
    • 移动零
 class Solution {
    public void moveZeroes(int[] nums) {
        int fast;
        int slow = 0;
        int n = nums.length;

        for(fast = slow; fast < n; fast++) {
            if(nums[fast] != 0) {
                int temp = nums[fast];
                nums[fast] = nums[slow];
                nums[slow] = temp;
                slow++;
            }
        }
    }
}
  • 比较含退格的字符串(只会用栈,但是很明显不是最优解)
class Solution {
    public void backspace(String s,Stack<Character> stack) {
        
        for(int i = 0; i < s.length(); i++) {
            if(s.charAt(i) != '#') {
                stack.push(s.charAt(i));
            }
            if(!stack.isEmpty()&&s.charAt(i) == '#') {
                stack.pop();
            } 
        }
    }
    public boolean backspaceCompare(String s, String t) {
        Stack<Character> stack0 = new Stack<>();
        Stack<Character> stack1 = new Stack<>();
        backspace(s, stack0);
        backspace(t, stack1);
        while(!stack0.isEmpty() && !stack1.isEmpty()) {
            if(stack0.pop() != stack1.pop()) {
                return false;
            }
        }

        if(!stack0.isEmpty() || !stack1.isEmpty()) {
            return false;
        }
        return true;
    }
}
1.1.3. 滑动窗口类
  • 暂时未涉及
1.2. 相向双指针
1.2.1. 二分查找类问题
  • 二分查找基础版
class Solution {
    public int search(int[] nums, int target) {
        int i = 0;
        int j = nums.length - 1;

        while(i <= j) {
            int mid = (i + j) / 2;
            if(nums[mid] < target) {
                i = mid + 1;
            }else if(nums[mid] > target){
                j = mid - 1;
            } else{
                return mid;
            }
        } 
        return -1;(进阶版的时候,这里返回 i 表示没找到,但是插入的位置是 i )
    }
}
  • 二分查找进阶——搜索插入位置(找到位置之后返回左边界)
class Solution {
    public int search(int[] nums, int target) {
        int i = 0;
        int j = nums.length - 1;

        while(i <= j) {
            int mid = (i + j) / 2;
            if(nums[mid] < target) {
                i = mid + 1;
            }else if(nums[mid] > target){
                j = mid - 1;
            } else{
                return mid;
            }
        } 
        return i;
    }
}
  • 二分查找进阶——查找左右边界问题(分别查找左右边界)
class Solution {
    public int[] searchRange(int[] nums, int target) {
        int[] res = new int[]{searchLeft(nums,target), searchRight(nums, target)};
        return res;
        
    }

    public int searchLeft(int[] nums, int target) {
        int i = 0;
        int j = nums.length - 1;
        int m1 = Integer.MAX_VALUE;
        while(i <= j) { //范围内有东西
            int mid1 = (i + j) >> 1;

            if(nums[mid1] > target) { //目标在左边
                j = mid1 - 1;
            } else if(nums[mid1] < target) { //目标在右边
                i = mid1 + 1;
            } else {
                m1 = Math.min(m1, mid1);//找到了
                j = mid1 - 1;
            }
        }
        return m1 == Integer.MAX_VALUE ? -1 : m1;//没找到,m1就没改变值
    }

    public int searchRight(int[] nums, int target) {
        int i = 0;
        int j = nums.length - 1;
        int m2 = Integer.MIN_VALUE;
        while(i <= j) { //范围内有东西
            int mid2 = (i + j) >> 1;

            if(nums[mid2] > target) { //目标在左边
                j = mid2 - 1;
            } else if(nums[mid2] < target) { //目标在右边
                i = mid2 + 1;
            } else {
                m2 = Math.max(m2, mid2);//找到了
                i = mid2 + 1;
            }
        }
        return m2 == Integer.MIN_VALUE ? -1 : m2;//没找到的话,m2就不会改变值
    }
}
  • 二分查找进阶——查找旋转数组中的目标值(核心就是分类)
class Solution {
    public int search(int[] nums, int target) {
        int n = nums.length;
        int left = 0;
        int right = n - 1;
        int res = -1;
        
        while(left <= right) {
            int mid = (left +right) >> 1;
			//这里分类,看的是旋转之后,前半段和后半段的比例
            if(nums[left] <= nums[mid]) {
            //这里是看哪里是顺序段,因为二分搜索只适用于顺序区间
                if(nums[left] <= target && nums[mid] >= target) {
                    right = mid - 1;
                } else {
                    left = mid + 1;
                }
            } else {
                if(nums[mid] <= target && nums[right] >= target) {
                    left = mid + 1;
                } else {
                    right = mid - 1;
                }
            }

            if(nums[mid] == target) {
                res = mid;
            }
        }
        return res;
    }
}
1.2.2. 三数之和类问题
  • 基础版,三数之和
    时间复杂度:O( n 2 n^2 n2)
class Solution {
    public List<List<Integer>> threeSum(int[] nums) {
        //排序数组
        Arrays.sort(nums);

        //初始化结果集合以及数组长度
        int n = nums.length;
        List<List<Integer>> res = new ArrayList<>();

        for(int i = 0; i < n - 2; i++) {
            int x = nums[i];
			//去重
            if(i > 0 && nums[i] == nums[i - 1]) {
                continue;
            }
			//优化减枝
            if(x + nums[i + 1] + nums[i + 2] > 0) {
                break;
            }
            if(x + nums[n - 1] + nums[n - 2] < 0) {
                continue;
            }

            int j = i + 1;
            int k = n - 1;

            while(j < k) {
                int sum = x + nums[j] + nums[k];

                if(sum > 0){
                    k--;
                } else if(sum < 0) {
                    j++;
                } else if(sum == 0) {
                    res.add(List.of(x, nums[j], nums[k]));
                    //优化减枝
                    for(j += 1; j < k && nums[j] == nums[j - 1]; j++) {
                        continue;
                    }
                    for(k -= 1; j < k && nums[k] == nums[k + 1]; k--) {
                        continue;
                    }
                }
            } 
        }
        return res;
    }
}
平方根问题
  • X 的平方根
  • 有效的完全平方根
    • 两道题代码几乎一致,只写第二题
class Solution {
    public boolean isPerfectSquare(int num) {
        long i = 1;
        long j = num / 2;
        while(i < j) {
            long mid = i + ((j - i + 1) >> 1);
            if(mid > num / mid) {
                j = mid - 1;
            } else if(mid == num / mid){
                i = mid;
            } else {
                i = mid;
            }
        }
        if(i * i == num) {
            return true;
        }
        return false;
    }
}
第二十二天的算法训练营主要涵盖了Leetcode题目中的三道题目,分别是Leetcode 28 "Find the Index of the First Occurrence in a String",Leetcode 977 "有序数组的平方",和Leetcode 209 "长度最小的子数组"。 首先是Leetcode 28题,题目要求在给定的字符串中找到第一个出现的字符的索引。思路是使用双指针来遍历字符串,一个指向字符串的开头,另一个指向字符串的结尾。通过比较两个指针所指向的字符是否相等来判断是否找到了第一个出现的字符。具体实现的代码如下: ```python def findIndex(self, s: str) -> int: left = 0 right = len(s) - 1 while left <= right: if s[left == s[right]: return left left += 1 right -= 1 return -1 ``` 接下来是Leetcode 977题,题目要求对给定的有序数组中的元素进行平方,并按照非递减的顺序返回结果。这里由于数组已经是有序的,所以可以使用双指针的方法来解决问题。一个指针指向数组的开头,另一个指针指向数组的末尾。通过比较两个指针所指向的元素的绝对值的大小来确定哪个元素的平方应该放在结果数组的末尾。具体实现的代码如下: ```python def sortedSquares(self, nums: List[int]) -> List[int]: left = 0 right = len(nums) - 1 ans = [] while left <= right: if abs(nums[left]) >= abs(nums[right]): ans.append(nums[left ** 2) left += 1 else: ans.append(nums[right ** 2) right -= 1 return ans[::-1] ``` 最后是Leetcode 209题,题目要求在给定的数组中找到长度最小的子数组,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值