创作不易,参考之前,点个赞,收藏,关注一下不过分吧,家人们
第1关:构建模型
任务描述
本关任务:
构建一个简单的模型,并且指定输入数据的尺寸:batch_size 为18,input_dim 为20。
编程要求
根据提示,在右侧编辑器补充代码,构建一个简单的模型,并指定输入输出数据的尺寸:units为18,input_dim 为20。
def input_values():
model = Sequential()
'''
返回值:
model: 一个顺序模型
'''
# 请在此添加代码 完成本关任务
# ********** Begin *********#
model.add(Dense(units=18,input_dim=20))
# ********** End **********#
# 返回model
return model
第2关:Keras模型编译
任务描述
本关任务:构建一个简单的模型,并对模型进行编译
编程要求
根据提示,在右侧编辑器补充代码,进而对模型进行编译,要求如下:
提示:
optimizer 为 'rmsprop',
loss 为 'binary_crossentropy',
metrics 为 'accuracy'.
model.add(Dense(1, activation='sigmoid'))
'''
返回值:
model: 一个顺序模型
'''
# 请在此添加代码 完成本关任务
# ********** Begin *********#
model.compile(optimizer='rmsprop',
loss='binary_crossentropy',
metrics=['accuracy'])
# ********** End **********#
# 返回model
return model
compile_model()
第3关:训练模型
任务描述
本关任务:构建一个简单的模型,对模型进行训练。
编程要求
根据提示,在右侧编辑器补充代码,进而对模型进行训练,要求如下:
提示:
将随机生成的1000组数据都作为训练集
建议迭代轮次为10
建议每次更新的样本数为64.
# 生成虚拟数据
data = np.random.random((1000, 100))
labels = np.random.randint(2, size=(1000, 1))
'''
返回值:
model: 一个顺序模型
'''
# 请在此添加代码 完成本关任务
# ********** Begin *********#
model.fit(data,labels,epochs=10,batch_size=64)
# ********** End **********#
# 返回model
return model
注:内容只做参考和分享,未经允许不可传播,侵权立删