package 左神题目.dp;
//尝试策略 和 状态转移 一码事
//推出暴力递归,什么动态规划或者其他什么东西都是水到渠成
//动态规划:第一步就是写出暴力递归 --> 建立表结构,分析表多大 --> 分析位置怎么依赖
/**给定一个整型数组arr,代表数值不同的纸牌排成一条线玩家A和玩家B依次拿走每张纸牌
规定玩家A先拿,玩家B后拿
但是每个玩家每次只能拿走最左或最右的纸牌
玩家A和玩家B都绝顶聪明
请返回最后获胜者的分数。*/
public class CardsInLine {
public static int win1(int[] arr){
if(arr == null || arr.length == 0){
return 0;
}
//先手
int first=f1(arr,0,arr.length-1);
//后手
int second=g1(arr,0,arr.length-1);
return Math.max(first,second);
}
//arr[L....R],先手获得的最好分数返回
public static int f1(int[] arr,int L,int R) {
if(L == R) {
return arr[L];
}
//第一种选择
int p1 = arr[L] + g1(arr,L+1,R);
//第二种选择
int p2 = arr[R] + g1(arr,L,R-1);
return Math.max(p1,p2);
}
//arr[L...R],后手获得的最好分数返回
public static int g1(int[] arr,int L,int R) {
if(L == R){
return 0;
}
//第一种最优
int p1 = f1(arr,L+1,R);//对手拿走了L位置的数
//第二种最优
int p2 = f1(arr,L,R-1);//对手拿走了R位置的数
//为什么返回min,因为做选择的不是你,是你的对手,所以对手会给你返回两个最优里面的最小
return Math.min(p1,p2);
}
//第一次优化:
//动态规划:第一次优化先用缓存表,然后在纸上画出这两张缓存表,看看每个位置的对应关系,再作出第二次优化
public static int win2(int[] arr){
if(arr.length==0||arr == null){
return 0;
}
int N = arr.length;
//缓存表
int[][] gmap = new int[N][N];
int[][] fmap = new int[N][N];
for(int i = 0;i<N;i++)
for(int j = 0;j<N;j++)
{
gmap[i][j] = -1;
fmap[i][j] = -1;
}
int first = g2(arr,0,N-1,gmap,fmap);
int second = f2(arr,0,N-1,gmap,fmap);
return Math.max(first,second);
}
public static int f2(int[] arr,int L,int R,int[][] gmap,int[][] fmap){
//看看是不是第一次,不是直接拿值
if(fmap[L][R]!=-1){
return fmap[L][R];
}
int ans = 0;
if(L==R){
ans = arr[L];
}else{
int p1 = arr[L] + g2(arr,L+1,R,gmap,fmap);
int p2 = arr[R] + g2(arr,L,R-1,gmap,fmap);
ans = Math.max(p1,p2);
}
//加入缓存,最重要的一步
fmap[L][R] = ans;
return ans;
}
public static int g2(int[] arr,int L,int R,int[][] gmap,int[][] fmap){
//看看是不是第一次,不是直接拿值
if(gmap[L][R]!=-1){
return gmap[L][R];
}
int ans = 0;
if(L != R){
int p1 = f2(arr,L+1,R,gmap,fmap);
int p2 = f2(arr,L,R-1,gmap,fmap);
ans = Math.min(p1,p2);
}
//加入缓存,最重要的一步
gmap[L][R] = ans;
return ans;
}
//第二次优化
public static int win3(int[] arr){
if(arr.length==0 || arr==null){
return 0;
}
int N = arr.length;
//先手表
int[][] fmap = new int[N][N];
//后手表
int[][] gmap = new int[N][N];
for(int i = 0;i<N;i++){
fmap[i][i] = arr[i];
}
for(int startCol = 1; startCol<N ;startCol++){
int L = 0;//行
int R = startCol;//列
while(R<N){
fmap[L][R] = Math.max(arr[L]+gmap[L+1][R],arr[R]+gmap[L][R-1]);
//==> int p1 = arr[L] + g1(arr,L+1,R);
// int p2 = arr[R] + g1(arr,L,R-1);
// return Math.max(p1,p2);
gmap[L][R] = Math.min(fmap[L+1][R],fmap[L][R-1]);
//==> int p1 = f1(arr,L+1,R);
// int p2 = f1(arr,L,R-1);
// return Math.min(p1,p2);
R++;
L++;
}
}
return Math.max(fmap[0][N-1],gmap[0][N-1]);
//==> int first = g2(arr,0,N-1,gmap,fmap);
// int second = f2(arr,0,N-1,gmap,fmap);
// return Math.max(first,second);
}
public static void main(String[] args) {
int[] arr = {50,100,40,10,10,1011,1,1,1,1,11,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,};
long start1 = System.currentTimeMillis();//计算时间
System.out.println(win1(arr));
long end1 = System.currentTimeMillis();
System.out.println("cost time:" + (end1-start1)+"ms");
long start2 = System.currentTimeMillis();//计算时间
System.out.println(win2(arr));
long end2 = System.currentTimeMillis();
System.out.println("cost time:" + (end2-start2)+"ms");
long start3 = System.currentTimeMillis();//计算时间
System.out.println(win3(arr));
long end3 = System.currentTimeMillis();
System.out.println("cost time:" + (end3-start3)+"ms");
}
}
给定一个整型数组arr,代表数值不同的纸牌排成一条线玩家A和玩家B依次拿走每张纸牌
最新推荐文章于 2023-09-26 22:11:28 发布