Hudi常用参数-同步Hive表相关参数配置

同步Hive表相关配置

  • hoodie.datasource.hive_sync.enable
    是否同步hudi表信息到hive metastore。 建议统一使用hive管理hudi表。

  • hoodie.datasource.hive_sync.database
    要同步给hive的数据库名。

  • hoodie.datasource.hive_sync.table
    同步hive的表名,建议这个值和hoodie.datasource.write.table.name保证一致。

  • hoodie.datasource.hive_sync.partition_fields
    用于决定hive分区列。

  • hoodie.datasource.hive_sync.partition_extractor_class
    用于提取hudi分区列值,将其转换成hive分区列。默认为:org.apache.hudi.hive.SlashEncodedDayPartitionValueExtractor

  • hoodie.datasource.hive_sync.support_timestamp
    当hudi表存在timestamp类型字段时,需指定此参数为true,以实现同步timestamp类型到hive元数据中。该值为false,默认将timestamp类型同步为bigInt,默认情况可能导致使用sql查询包含timestamp类型字段的hudi表出现错误。

  • hoodie.datasource.hive_sync.fast_sync
    Hudi同步Hive分区方式:
    •true:从最近一次hive同步后所修改的分区直接向Hive表中做add partition if not exist操作。
    •false:会根据修改的分区去hive表查询是否已存在,不存在的进行添加。

  • hoodie.datasource.hive_sync.mode
    hudi表同步hive表的方式,默认为hms:
    •hms:通过hive meta client同步元数据。
    •jdbc:通过hive jdbc方式同步元数据。
    •hiveql:执行hive ql方式同步元数据。

<think>好的,我需要帮助用户了解如何在Hive中使用HudiHudiHive的集成方案。首先,我应该回顾用户提供的引用内容,看看里面有哪些关键信息。 根据引用[1],Hudi数据可以手动创建Hive来映射,并且使用Hive SQL操作Hudi数据,尤其是MOR模式。引用[2]提到HudiHive Metastore中注册为标准,可以像普通Hive一样查询,同时支持时间旅行和增量查询。引用[3]提供了环境准备的步骤,比如拷贝必要的jar包到Hive的lib目录下。引用[4]则提到在写入数据时同步Hive参数,生成对应的Hive。 首先,我需要整理集成步骤。环境准备是第一步,需要将Hudi相关的jar包复制到Hive的lib目录,如hudi-hadoop-mr-bundle和hudi-hive-sync-bundle,然后重启Hive服务。接下来,手动创建Hive来映射Hudi数据,注意指定存储格式为org.apache.hudi,以及输入输出格式。对于自动同步结构的情况,需要在写入Hudi数据时配置Hive Sync参数,比如hoodie.datasource.hive_sync.*相关参数,这样在写入时自动同步Hive Metastore。 然后,查询Hudi时,用户可以直接使用Hive SQL,但要注意可能需要设置一些参数,比如使用Hive的InputFormat。对于增量查询,需要设置hoodie.*.consume模式和相关参数,以获取特定时间后的变更数据。 用户可能的问题可能涉及性能优化、增量查询的具体配置,或者如何处理不同存储模式(如COW和MOR)在Hive中的现。需要确保回答结构清晰,分步骤说明,并引用提供的资料来支持每个步骤。 最后,生成相关问题时要围绕HiveHudi集成的常见疑问,比如性能分析、优化方法、应用场景等。确保问题具体,能够帮助用户深入理解。</think>### HiveHudi集成方案详解 #### 1. **环境准备** 在Hive中集成Hudi需要先完成以下步骤: - **拷贝JAR包**:将Hudi的依赖包(如`hudi-hadoop-mr-bundle`和`hudi-hive-sync-bundle`)复制到Hive的`lib`目录,例如: ```bash cp /path/to/hudi-hadoop-mr-bundle-*.jar /opt/module/hive/lib/ cp /path/to/hudi-hive-sync-bundle-*.jar /opt/module/hive/lib/ ``` 完成后需重启Hive服务以加载新依赖[^3]。 #### 2. **手动创建Hive映射Hudi数据** 若Hudi数据已存在,可通过手动建实现映射。例如,对HDFS中存储的MOR模式: ```sql CREATE EXTERNAL TABLE hudi_table STORED BY 'org.apache.hudi' LOCATION '/hdfs/path/to/hudi_table' TBLPROPERTIES ( 'input.format' = 'org.apache.hudi.hadoop.HoodieParquetInputFormat', 'output.format' = 'org.apache.hudi.hadoop.HoodieParquetOutputFormat' ); ``` 通过`STORED BY`指定Hudi存储格式,`LOCATION`指向Hudi数据路径[^1]。 #### 3. **自动同步结构** 在写入Hudi数据时,可通过配置参数自动同步元数据到Hive: ```java // 示例写入配置(Spark) .writeOptions( hoodie.datasource.write.recordkey.field = "id", hoodie.datasource.hive_sync.database = "default", hoodie.datasource.hive_sync.table = "hudi_table", hoodie.datasource.hive_sync.enable = "true" ) ``` 此配置会同步名、字段、分区等信息到Hive Metastore,无需手动建[^4]。 #### 4. **查询Hudi** - **全量查询**:直接使用标准Hive SQL: ```sql SELECT * FROM hudi_table WHERE partition_col='value'; ``` - **增量查询**:需设置Hive参数指定时间范围或提交版本: ```sql SET hoodie.hudi_table.consume.mode=INCREMENTAL; SET hoodie.hudi_table.consume.start.timestamp=20230101000000; SELECT * FROM hudi_table; ``` 此模式仅拉取指定时间后的增量数据[^2][^4]。 #### 5. **存储模式兼容性** - **COW**:Hive直接读取最新版本数据,无中间状态。 - **MOR**:需通过`hoodie.*.input.format`指定合并逻辑,例如: ```sql SET hive.input.format=org.apache.hudi.hadoop.hive.HoodieCombineHiveInputFormat; ``` 确保查询时合并实时文件和日志文件。 #### 6. **性能优化建议** - **分区剪枝**:利用Hive的分区过滤减少数据扫描范围。 - **压缩调度**:对MOR定期执行压缩(`compaction`),减少小文件数量。 - **索引同步**:启用`hoodie.index.type=HIVE`保持Hive元数据与Hudi索引一致。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值