🔺 三角妙解:一道融合面积与边角关系的经典好题
📝 问题描述 (巴蜀中学高2026届11月适应性月考)
在△ABC\triangle ABC△ABC中,三个内角A,B,CA,B,CA,B,C所对的边分别为a,b,ca,b,ca,b,c,SSS为△ABC\triangle ABC△ABC的面积,若
a2+2b2+c2=45S, a^{2}+2b^{2}+c^{2}=4\sqrt{5}S,a2+2b2+c2=45S,
则sinC=\sin C =sinC=(\qquad).
A.306\dfrac{\sqrt{30}}{6}630 \qquad B.255\dfrac{2\sqrt{5}}{5}525 \qquad C.66\dfrac{\sqrt{6}}{6}66 \qquad D.55\dfrac{\sqrt{5}}{5}55
💡 破题思路
这道题看起来有点吓人,又是边长又是面积的,但别慌!我们先拆解题目:
1️⃣ 条件转化:面积SSS可以表示为12absinC\dfrac{1}{2}ab\sin C21absinC,所以条件可以改写为关于a,b,ca,b,ca,b,c和sinC\sin CsinC的方程.
2️⃣ 余弦定理:看到a2+c2a^2+c^2a2+c2,马上想到余弦定理a2+b2−c2=2abcosCa^{2}+b^{2}-c^{2}=2ab\cos Ca2+b2−c2=2abcosC.
3️⃣ 不等式助攻:后续推导中会出现2a2+3b22a^{2}+3b^{2}2a2+3b2,这货的最小值刚好能帮我们锁定sinC\sin CsinC的值!
💡核心策略:遇到边角混合条件时,优先考虑:
- 面积公式化边为角
- 余弦定理/正弦定理搭建桥梁
- 不等式求极值锁定变量关系
🔍 关键推导
⚠️ 注意:下面的推导会用到一些高中数学的"组合拳",跟着节奏一步步来!
1️⃣ 面积公式代入:
原式a2+2b2+c2=45Sa^{2}+2b^{2}+c^{2}=4\sqrt{5}Sa2+2b2+c2=45S,而S=12absinCS=\dfrac{1}{2}ab\sin CS=21absinC,所以:
a2+2b2+c2=25absinC a^{2}+2b^{2}+c^{2}=2\sqrt{5}ab\sin C a2+2b2+c2=25absinC
2️⃣ 余弦定理登场:
我们知道:
a2+b2−c2=2abcosC a^{2}+b^{2}-c^{2}=2ab\cos C a2+b2−c2=2abcosC
把这个式子与原式相加(为什么相加?因为这样可以消去c2c^2c2!):
2a2+3b2=2ab(5sinC+cosC) 2a^{2}+3b^{2}=2ab(\sqrt{5}\sin C+\cos C) 2a2+3b2=2ab(5sinC+cosC)
3️⃣ 三角合成为王:
右边可以写成2ab⋅6sin(C+φ)2ab \cdot \sqrt{6}\sin(C+\varphi)2ab⋅6sin(C+φ),其中tanφ=15\tan \varphi=\dfrac{1}{\sqrt{5}}tanφ=51(这里用了辅助角公式).
4️⃣ 不等式神助攻:
根据均值不等式:
2a2+3b2≥26ab 2a^{2}+3b^{2} \geq 2\sqrt{6}ab 2a2+3b2≥26ab
而右边有:
26absin(C+φ)≤26ab 2\sqrt{6}ab\sin(C+\varphi) \leq 2\sqrt{6}ab 26absin(C+φ)≤26ab
要使得等式成立,必须同时取等!于是:
sin(C+φ)=1 \sin(C+\varphi)=1 sin(C+φ)=1
这意味着C+φ=π2C+\varphi=\dfrac{\pi}{2}C+φ=2π,所以:
sinC=cosφ \sin C=\cos \varphi sinC=cosφ
5️⃣ 终极大计算:
根据tanφ=15\tan \varphi=\dfrac{1}{\sqrt{5}}tanφ=51,可得:
cosφ=56=306 \cos \varphi=\dfrac{\sqrt{5}}{\sqrt{6}}=\dfrac{\sqrt{30}}{6} cosφ=65=630
✅ 正确答案:A选项.
🎯 举一反三
这类题目常见的解题套路:
- 边角互化:遇到面积条件优先转化为三角函数
- 定理组合:余弦定理+正弦定理双管齐下
- 极值锁定:当出现不等式取等条件时,往往能确定角度关系
下次遇到类似的题目,记得大喊一声:"面积君,我们又见面了!"然后按照这个流程操作就行啦~
📢 课后思考:如果把题目中的系数2b22b^22b2改成3b23b^23b2,结果会怎样?欢迎在评论区留下你的推导过程!
8万+

被折叠的 条评论
为什么被折叠?



