武忠祥教授考研数学超越90分-每日一题5月10日

解题思路:要求收敛域先求出收敛区间,再判断收敛区间两个端点处是否收敛。

第一步:求收敛区间

求收敛区间需要先求出收敛半径和中心点。

①求收敛半径:

公式如下:

因为a_{n}中含有n次方,显然我们选择第二种公式更简单。

带入公式:

,把3^{n}提出来计算

\sqrt[n]{3^{n}+(-2)^{n}}  =\sqrt[n]{3^{n}(1+(-\frac{2}{3})^{n})} =3\sqrt[n]{(1+(-\frac{2}{3})^{n})},(这里根据一个理论可以直接看出是等于3,我直接写总结里面了)

根据上面的理论,在n趋于无穷时-\frac{2}{3}^{n}=0,那么\rho求出来了就是3,收敛半径就为\frac{1}{3}

②求中心点

根据左加右减收敛中心点就是1,

③求出收敛区间

收敛区间为(1-\frac{1}{3},1+\frac{1}{3})=(\frac{2}{3}\frac{4}{3}

第二步:判断收敛区间两端点是否收敛。

①我们先看\frac{2}{3},带入式子中:乘完再拆开

显然是个交错级数,根据莱布尼茨准则

这里的u_{n}就是\frac{1}{n},根据莱布尼茨准则,我们不难看出是收敛的也收敛,所以x=\frac{2}{3}时是收敛的。

②我们再看x=\frac{4}{3}的情况,带入式子中:

是调和级数,是发散的。

加上绝对值后就是所以也收敛,但是一个发散+收敛还是发散。

所以收敛域就是[\frac{2}{3},\frac{4}{3})

总结知识点

①收敛半径公式:

②莱布尼茨准则(交错级数):

调和级数是发散的:

当n趋于无穷时,形如\sqrt[n]{a^{n}+b^{n}}的极限

(1)当a和b都是正数时,极限取决于老大;

(2)当a和b一个是正数一个是负数时,极限取决于绝对值大的。

例:\lim_{n->\infty }\sqrt[n]{3^{n}+(-2)^{n}}的极限就是\sqrt[n]{3^{n}}=3

当n趋于无穷时,x的n次方的极限,当x的绝对值大于1时是发散的,小于1时是收敛的

⑥解题思路:要求收敛域先求出收敛区间,再判断收敛区间两个端点处是否收敛。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Gabriel Drop Out

饿饿!饭饭!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值