解题思路:要求收敛域先求出收敛区间,再判断收敛区间两个端点处是否收敛。
第一步:求收敛区间
求收敛区间需要先求出收敛半径和中心点。
①求收敛半径:
公式如下:
因为中含有n次方,显然我们选择第二种公式更简单。
带入公式:
,把
提出来计算
,(这里根据一个理论可以直接看出是等于3,我直接写总结里面了)
根据上面的理论,在n趋于无穷时,那么
求出来了就是3,收敛半径就为
。
②求中心点
根据左加右减收敛中心点就是1,
③求出收敛区间
收敛区间为(1-,1+
)=(
,
)
第二步:判断收敛区间两端点是否收敛。
①我们先看,带入式子中:乘完再拆开
显然是个交错级数,根据莱布尼茨准则:
这里的就是
,根据莱布尼茨准则,我们不难看出
是收敛的
也收敛,所以x=
时是收敛的。
②我们再看x=的情况,带入式子中:
是调和级数,是发散的。
加上绝对值后就是
所以也收敛,但是一个发散+收敛还是发散。
所以收敛域就是
总结知识点
①收敛半径公式:
②莱布尼茨准则(交错级数):
③调和级数是发散的:
④当n趋于无穷时,形如的极限:
(1)当a和b都是正数时,极限取决于老大;
(2)当a和b一个是正数一个是负数时,极限取决于绝对值大的。
例:的极限就是
。
⑤当n趋于无穷时,x的n次方的极限,当x的绝对值大于1时是发散的,小于1时是收敛的。
⑥解题思路:要求收敛域先求出收敛区间,再判断收敛区间两个端点处是否收敛。