第311题| 超好用!二重积分求旋转体体积公式|武忠祥老师每日一题

第一步:

(1)找渐近线,先看水平渐近线,看x趋于无穷时,y有没有趋于一个有限的值。

y=\lim_{x\rightarrow \infty }\frac{x^{2}}{1+x^{2}}=1,

得出水平渐近线y=1。因为左右两边都是水平渐近线,所以没有斜渐近线。

第二步:

画出图像,因为是偶函数,左右两边的图像应该是对称的:

这里要用到求旋转体体积的公式:

 \vee = 2\pi \iint_{}^{}r_{(x,y)} dxdy,这里的r是图像上的一点到转轴的距离。这里显然r = 1 - y.

因为图像是左右两边对称的,所以我们直接求一边然后二倍就行。以右边为例。

看到:\int \frac{dx}{1+x^{2}} 应该想到:

1+\tan^{2}x=\frac{1}{\cos^{2}x }=\sec^{2} x

(\tan x)'=\frac{1}{\cos ^{2}x}=\sec ^{2}x

所以直接令x=tan t;

考察知识点:

1.求旋转体体积的公式:

设有一个点(x,y)

 \vee = 2\pi \iint_{}^{}r_{(x,y)} dxdy,这里的r是图像上的一点(x,y)到转轴的距离。

2.考察计算:

1+\tan^{2}x=\frac{1}{\cos^{2}x }=\sec^{2} x

(\tan x)'=\frac{1}{\cos ^{2}x}=\sec ^{2}x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Gabriel Drop Out

饿饿!饭饭!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值