【算法笔记】最近公共祖先(LCA)问题求解——倍增算法

0. 前言

最近公共祖先简称 LCA(Lowest Common Ancestor)。两个节点的最近公共祖先,就是这两个点的公共祖先里面,离根最远的那个。

这种算法应用很广泛,可以很容易解决树上最短路等问题。

为了方便,我们记某点集 S = { v 1 , v 2 , … , v n } S=\{v_1,v_2,\ldots,v_n\} S={v1,v2,,vn} 的最近公共祖先为 LCA ( v 1 , v 2 , … , v n ) \text{LCA}(v_1,v_2,\ldots,v_n) LCA(v1,v2,,vn) LCA ( S ) \text{LCA}(S) LCA(S)

部分内容参考 OI Wiki,文章中所有算法均使用C++实现。

例题:洛谷 P3379 【模板】最近公共祖先(LCA)

1. 性质

  1. LCA ( { u } ) = u \text{LCA}(\{u\})=u LCA({u})=u
  2. u u u v v v 的祖先,当且仅当 LCA ( u , v ) = u \text{LCA}(u,v)=u LCA(u,v)=u
  3. 如果 u u u 不为 v v v 的祖先并且 v v v 不为 u u u 的祖先,那么 u , v u,v u,v 分别处于 LCA ( u , v ) \text{LCA}(u,v) LCA(u,v) 的两棵不同子树中;
  4. 前序遍历中, LCA ( S ) \text{LCA}(S) LCA(S) 出现在所有 S S S 中元素之前,后序遍历中 LCA ( S ) \text{LCA}(S) LCA(S) 则出现在所有 S S S 中元素之后;
  5. 两点集并的最近公共祖先为两点集分别的最近公共祖先的最近公共祖先,即 LCA ( A ∪ B ) = LCA ( LCA ( A ) , LCA ( B ) ) \text{LCA}(A\cup B)=\text{LCA}(\text{LCA}(A), \text{LCA}(B)) LCA(AB)=LCA(LCA(A),LCA(B))
  6. 两点的最近公共祖先必定处在树上两点间的最短路上;
  7. d ( u , v ) = h ( u ) + h ( v ) − 2 h ( LCA ( u , v ) ) d(u,v)=h(u)+h(v)-2h(\text{LCA}(u,v)) d(u,v)=h(u)+h(v)2h(LCA(u,v)),其中 d d d 是树上两点间的距离, h h h 代表某点到树根的距离。

2. 求解算法

2.0 前置知识1:树的邻接表存储

简单来说,树的邻接表存储就是对于每个结点,存储其能通过一条有向或无向边,直接到达的所有结点。
传统的存储方式是使用链表(或模拟链表),这样实现比较麻烦,也容易写错。
此处为了更好的可读性我们使用STL中的可变长度顺序表vector

#include <vector> // 需要使用STL中的vector
#define maxn 100005 // 最大结点个数

std::vector<int> G[maxn];

此时,若要添加一条无向边 u ↔ v u\leftrightarrow v uv,可使用:

G[u].push_back(v);
G[v].push_back(u);

若要添加 u → v u\to v uv的有向边:

G[u].push_back(v);

遍历 v v v能直接到达的所有结点:

for(int u: G[v])
	cout << u << endl;

2.1 前置知识2:DFS 遍历 & 结点的深度计算

对于两种算法,都需要预处理出每个结点的深度。
一个结点的深度定义为这个结点到树根的距离。

要预处理出所有结点的深度,很简单:
运用树形dp的方法,令 h u h_u hu 表示结点 u u u 的深度,逐层向下推进:

#include <cstdio>
#include <vector>
#define maxn 100005
using namespace std;

vector<int> G[maxn]; // 邻接表存储
int depth[maxn]; // 每个结点的深度

void dfs(int v, int par) // dfs(当前结点,父亲结点)
{
	int d = depth[v] + 1; // 子结点的深度=当前结点的深度+1
	for(int u: G[v])
		if(u != par) // 不加这条判断会无限递归
		{
			depth[u] = d; // dp更新子结点深度
			dfs(u, v); // 往下dfs
		}
}

int main()
{
	// 构建一张图
	// ...
	// 假定图已存入邻接表G:
	int root = 0; // 默认树根为0号结点,根据实际情况设置
	dfs(root, -1); // 对于根结点,父亲结点为-1即为无父亲结点
	return 0;
}

2.2 朴素算法

u , v u,v u,v 表示两个待求 LCA 的结点。需提前预处理出每个结点的父亲(记结点 v v v 的父亲为 f v f_v fv)。

算法步骤:

  1. 使 u , v u,v u,v 的深度相同:可以让深度大的结点往上走,直到与深度小的结点深度相同。
  2. u ≠ v u\ne v u=v时: u ← f u , v ← f v u\gets f_u,v\gets f_v ufu,vfv
  3. 循环直到 u = v u=v u=v,此条件成立后 u u u v v v 的值即为我们要求的 LCA。

时间复杂度分析:

  • 预处理:DFS 遍历整棵树, O ( N ) \mathcal O(N) O(N)
  • 单次查询:最坏 O ( N ) \mathcal O(N) O(N),平均 O ( log ⁡ N ) \mathcal O(\log N) O(logN)(随机树的高为 ⌈ log ⁡ N ⌉ \lceil\log N\rceil logN

参考代码:

#include <cstdio>
#include <vector>
#include <algorithm>
#define maxn 500005
using namespace std;

vector<int> G[maxn];
int depth[maxn], par[maxn];

void dfs(int v)
{
	int d = depth[v] + 1;
	for(int u: G[v])
		if(u != par[v])
		{
			par[u] = v, depth[u] = d;
			dfs(u);
		}
}

int lca(int u, int v)
{
	if(depth[u] < depth[v])
		swap(u, v);
	while(depth[u] > depth[v])
		u = par[u];
	while(u != v)
		u = par[u], v = par[v];
	return u;
}

int main()
{
	int n, q, root;
	scanf("%d%d%d", &n, &q, &root);
	for(int i=1; i<n; i++)
	{
		int u, v;
		scanf("%d%d", &u, &v);
		G[u].push_back(v);
		G[v].push_back(u);
	}
	par[root] = -1, depth[root] = 0;
	dfs(root);
	while(q--)
	{
		int u, v;
		scanf("%d%d", &u, &v);
		printf("%d\n", lca(u, v));
	}
	return 0;
}

可以发现,程序在最后四个测试点上TLE了:

TLE

这是因为,这四个点是专门针对朴素算法设计的(正好是一个 Subtask),使算法的时间复杂度达到了最坏情况 O ( N Q ) \mathcal O(NQ) O(NQ),而 N , Q ≤ 5 × 1 0 5 N,Q\le 5\times 10^5 N,Q5×105,所以无法通过测试点。当然,朴素算法在随机树上回答 Q Q Q 次询问的时间复杂度还是 O ( N + Q log ⁡ N ) \mathcal O(N+Q\log N) O(N+QlogN),被极端数据卡掉也没办法

2.3 倍增

倍增算法是朴素算法的改进算法,也是最经典的 LCA 求法。

预处理:

  • fa x , i \text{fa}_{x,i} fax,i 表示点 x x x 的第 2 i 2^i 2i 个祖先。
  • dfs 预处理深度信息时,也可以预处理出 fa x , i \text{fa}_{x,i} fax,i
    • 首先考虑 i i i的范围: 2 i ≤ d x 2^i\le d_x 2idx(前面说的, d x d_x dx 表示结点 x x x 的深度),所以有 0 ≤ i ≤ ⌊ log ⁡ 2 d x ⌋ 0\le i\le \lfloor\log_2 d_x\rfloor 0ilog2dx
    • 对于 i = 0 i=0 i=0 2 i = 2 0 = 1 2^i=2^0=1 2i=20=1,所以直接令 fa x , 0 = ( x 的父亲 ) \text{fa}_{x,0}=(x\text{的父亲}) fax,0=(x的父亲) 即可。
    • 对于 1 ≤ i ≤ ⌊ log ⁡ 2 d x ⌋ 1\le i\le \lfloor\log_2 d_x\rfloor 1ilog2dx x x x 的第 2 i 2^i 2i 个祖先可看作 x x x 的第 2 i − 1 2^{i-1} 2i1 个祖先的第 2 i − 1 2^{i-1} 2i1 个祖先( 2 i − 1 + 2 i − 1 = 2 i 2^{i-1}+2^{i-1}=2^i 2i1+2i1=2i),即:
      fa x , i = fa fa x , i − 1 , i − 1 \text{fa}_{x,i}=\text{fa}_{\text{fa}_{x,i-1},i-1} fax,i=fafax,i1,i1

求解步骤:

  1. 使 u , v u,v u,v 的深度相同:计算出 u , v u,v u,v 两点的深度之差,设其为 y y y。通过将 y y y 进行二进制拆分,我们将 y y y 次游标跳转优化为「 y y y 的二进制表示所含 1 的个数」次游标跳转(详见代码)。
  2. 特判:如果此时 u = v u=v u=v,直接返回 u u u v v v 作为 LCA 结果。
  3. 同时上移 u u u v v v:从 i = ⌊ log ⁡ 2 d u ⌋ i=\lfloor\log_2 d_u\rfloor i=log2du 开始循环尝试,一直尝试到 0 0 0(包括 0 0 0),如果 fa u , i ≠ fa v , i \text{fa}_{u,i}\not=\text{fa}_{v,i} fau,i=fav,i,则 u ← fa u , i , v ← fa v , i u\gets\text{fa}_{u,i},v\gets\text{fa}_{v,i} ufau,i,vfav,i,那么最后的 LCA 为 fa u , 0 \text{fa}_{u,0} fau,0

时间复杂度分析:

  • 预处理: O ( N ) \mathcal O(N) O(N) DFS ×   O ( log ⁡ N ) \times~\mathcal O(\log N) × O(logN) 预处理 = O ( N log ⁡ N ) =\mathcal O(N\log N) =O(NlogN)
  • 单次查询:平均 O ( log ⁡ N ) O(\log N) O(logN),最坏 O ( log ⁡ N ) O(\log N) O(logN)
  • 预处理 + Q Q Q 次查询: O ( N + Q log ⁡ N ) \mathcal O(N+Q\log N) O(N+QlogN)

另外倍增算法可以通过交换 fa 数组的两维使较小维放在前面。这样可以减少 cache miss 次数,提高程序效率。

参考代码:

#include <cstdio>
#include <vector>
#include <cmath>
#define maxn 500005
using namespace std;

vector<int> G[maxn];
int fa[maxn][19]; // 2^19=524288
int depth[maxn];

void dfs(int v, int par)
{
	fa[v][0] = par;
	int d = depth[v] + 1;
	for(int i=1; (1<<i)<d; i++)
		fa[v][i] = fa[fa[v][i - 1]][i - 1];
	for(int u: G[v])
		if(u != par)
			depth[u] = d, dfs(u, v);
}

inline int lca(int u, int v)
{
	if(depth[u] < depth[v])
		u ^= v ^= u ^= v;
	int m = depth[u] - depth[v];
	for(int i=0; m; i++, m>>=1)
		if(m & 1)
			u = fa[u][i];
	if(u == v) return u; // 这句不能丢
	for(int i=log2(depth[u]); i>=0; i--)
		if(fa[u][i] != fa[v][i])
			u = fa[u][i], v = fa[v][i];
	return fa[u][0];
}

int main()
{
	int n, q, root;
	scanf("%d%d%d", &n, &q, &root);
	for(int i=1; i<n; i++)
	{
		int x, y;
		scanf("%d%d", &x, &y);
		G[--x].push_back(--y);
		G[y].push_back(x);
	}
	depth[--root] = 0;
	dfs(root, -1);
	while(q--)
	{
		int u, v;
		scanf("%d%d", &u, &v);
		printf("%d\n", lca(--u, --v) + 1);
	}
	return 0;
}

AC

3. 习题

4. 总结

本文详细讲解了 LCA 问题以及求解 LCA 的两种算法。对比如下:

算法预处理时间复杂度单次查询时间复杂度1空间复杂度能否通过例题2
朴素算法 O ( N ) \mathcal O(N) O(N) O ( N ) \mathcal O(N) O(N) O ( N ) \mathcal O(N) O(N)
倍增算法 O ( N log ⁡ N ) \mathcal O(N\log N) O(NlogN) O ( log ⁡ N ) \mathcal O(\log N) O(logN) O ( N log ⁡ N ) \mathcal O(N\log N) O(NlogN)✔️

创作不易,希望大家能给个三连,感谢支持!


  1. 此时间复杂度按照最坏情况计算↩︎

  2. 例题:洛谷 P3379 【模板】最近公共祖先(LCA) ↩︎

  • 8
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
Tarjan算法是一种用于求解最近公共祖(Least Common Ancestors,LCA问题的离线算法算法的核心思想是利用深度优先搜索(DFS)和并查集(Union Find)来解决问题。 首先,我们从根节点开始遍历每一个节点,并将节点分为三类,用st[]数组表示。0代表还未被遍历,1代表正在遍历这个点,2代表已经遍历完这个点并且回溯回来了。这样的划分有助于确定节点的最近公共祖先。 在Tarjan算法中,我们一边遍历一边回应查询。每当遍历到一个节点时,我们查找与该节点相关的所有查询。如果查询中的节点已经被遍历完(即st[]值为2),我们可以利用已经计算好的信息来计算它们的最近公共祖先最近公共祖先的距离可以通过两个节点到根节点的距离之和减去最近公共祖先节点到根节点的距离来计算。 在Tarjan算法中,我们可以通过深度优先搜索来计算dist[]数组,该数组表示每个节点到根节点的距离。我们可以利用父节点到根节点的距离加上边的权值来计算每个节点到根节点的距离。 最后,我们可以通过并查集来操作st[]数组。当遍历完一个节点的所有子后,将子中的节点放入该节点所在的集合。这样,每个子的节点的最近公共祖先都是该节点。 综上所述,Tarjan算法利用DFS和并查集来求解最近公共祖先问题。它的时间复杂度为O(n+m),其中n是节点数,m是查询次数。通过该算法,我们可以高效地解决最近公共祖先问题。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [最近公共祖先之tarjan](https://blog.csdn.net/qq_63092029/article/details/127737575)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 33.333333333333336%"] - *2* [【模版】Tarjan离线算法最近公共祖先(LCA)](https://blog.csdn.net/weixin_43359312/article/details/100823178)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 33.333333333333336%"] - *3* [Tarjan算法求解最近公共祖先问题](https://blog.csdn.net/Yeluorag/article/details/48223375)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 33.333333333333336%"] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值