四、输运现象
L21 电解质中体相传输
目录
1. Nernst-Planck 方程
在浓溶液中,物质 i i i的通量可以通过线性不可逆热力学描述,其通量为:
F i = M i c i ∇ μ i F_i = M_i c_i \nabla \mu_i Fi=Mici∇μi
根据爱因斯坦关系,迁移率与(示踪)扩散率的关系为:
M i = D i k B T M_i = \frac{D_i}{k_B T} Mi=kBTDi
其中, k B k_B kB是玻尔兹曼常数, T T T是温度。
离子物种 i i i的扩散电化学势 μ i \mu_i μi可以分为化学和静电两部分:
μ i = k B T ln a i + z i e ϕ \mu_i = k_B T \ln a_i + z_i e \phi μi=kBTlnai+zieϕ
其中, ϕ \phi ϕ是平均静电势, a i = γ i c i a_i = \gamma_i c_i ai=γici为化学活度, γ i \gamma_i γi为活度系数。于是通量密度(单位面积的数量/时间)可以由Nernst-Planck方程给出:
F i ⃗ = − D i c h e m ∇ c i + M i z i e c i E ⃗ \vec{F_i} = -D_i^{chem} \nabla c_i + M_i z_i e c_i \vec{E} Fi=−Dichem∇ci+MizieciE
其中, E = − ∇ ϕ E = -\nabla \phi E=−∇ϕ为电场,化学扩散系数 D chem D_{\text{chem}} Dchem为:
D chem = D i ( 1 + ∂ ln γ i ∂ ln c i ) D^{\text{chem}} = D_i \left( 1 + \frac{\partial \ln \gamma_i}{\partial \ln c_i} \right) Dchem=Di(1+∂lnci∂lnγi)
在稀溶液( γ i = 1 , a i = c i \gamma_i = 1, a_i = c_i γi=1,ai=ci)中,NP通量简化为:
F i ⃗ = − D i ( ∇ c i + z i c i ∇ ϕ ~ ) \vec{F_i} = -D_i (\nabla c_i + z_i c_i \nabla \tilde{\phi}) Fi=−Di(∇ci+zici∇ϕ~)
其中 ϕ ~ = e ϕ / ( k B T ) \tilde{\phi} = e\phi / (k_B T) ϕ~=eϕ/(kBT) 是缩放到热电压的无量纲电势。在NP方程中,通量分为两个部分:由浓度梯度引起的化学扩散,和由电场引起的电迁移(或漂移)。
质量守恒意味着:
∂ c i ∂ t + ∇ ⋅ ( u ⃗ c i + F i ) = R i \frac{\partial c_i}{\partial t} + \nabla \cdot (\vec{u} c_i + F_i) = R_i ∂t∂ci+∇⋅(uci+Fi)=Ri
其中 u ⃗ \vec{u} u 是流体速度,通过对流将离子运输,产生通量 u ⃗ c i \vec{u} c_i uci,而 R i R_i Ri 是物种 i i i 的反应速率。在远离平衡的水溶液中,这些反应(如水的自离解反应 H + + O H − ↔ H 2 O H^+ + OH^- \leftrightarrow H_2O H++OH−↔H2O)可能非常重要。
同样的 Nernst-Planck 方程也可以用于描述半导体,其中电子和空穴充当离子的角色,而均相反应可能源于激子(电子-空穴)湮灭或产生(例如在太阳能电池中吸收阳光时)。
2. 电解质中的电荷传输
电荷密度为:
ρ e = ∑ i z i e c i \rho_e = \sum_i z_i e c_i ρe=i∑zieci
电流密度(单位面积的电荷/时间)为:
J ⃗ = ∑ i z i e ( u ⃗ c i + F i ⃗ ) \vec{J} = \sum_i z_i e (\vec{u} c_i + \vec{F_i}) J=i∑zie(uci+Fi)
电荷守恒满足:
∂ ρ e ∂ t + ∇ ⋅ J ⃗ = ∑ i R i = 0 \frac{\partial \rho_e}{\partial t} + \nabla \cdot \vec{J} = \sum_i R_i = 0 ∂t∂ρe+∇⋅J=i∑Ri=0
其中假设体相反应不产生净电荷(只有分子之间的局部电荷转移)。
电流有三种贡献:
J ⃗ = J ⃗ c + J ⃗ d + J ⃗ e \vec{J} = \vec{J}_c + \vec{J}_d + \vec{J}_e J=Jc+Jd+Je
- 对流电流
J
⃗
c
\vec{J}_c
Jc:由电荷的对流引起
J ⃗ c = ρ e u ⃗ \vec{J}_c = \rho_e \vec{u} Jc=ρeu - 扩散电流
J
⃗
d
\vec{J}_d
Jd:由浓度梯度驱动
J ⃗ d = − ∑ i z i e D i ∇ c i \vec{J}_d = -\sum_i z_i e D_i \nabla c_i Jd=−i∑zieDi∇ci - 欧姆电流
J
⃗
e
\vec{J}_e
Je:由电场驱动的电迁移,符合欧姆定律
J ⃗ e = σ e E ⃗ \vec{J}_e = \sigma_e \vec{E} Je=σeE
其中离子电导率为:
σ e = ∑ i ( z i e ) 2 D i c i k B T \sigma_e = \sum_i \frac{(z_i e)^2 D_i c_i}{k_B T} σe=i∑kBT(zie)2Dici
3. 体相电中性
在远离带电边界的“体相”区域中,电解质趋于准中性,电荷波动远小于该位置的总电荷数:
∣ ρ e ∣ ≪ ∑ i ∣ z i ∣ e c i |\rho_e| \ll \sum_i |z_i| e c_i ∣ρe∣≪i∑∣zi∣eci
因此可以将体相电荷密度设为零来计算离子浓度:
ρ e = ∑ i z i e c i = 0 \rho_e = \sum_i z_i e c_i = 0 ρe=i∑zieci=0
这一条件隐含地定义了电势 ϕ \phi ϕ。同样,我们可以确保不产生任何电荷【电荷守恒】:
∂ ρ e ∂ t + ∇ ⋅ J ⃗ = 0 \frac{\partial \rho_e}{\partial t} + \nabla \cdot \vec{J} = 0 ∂t∂ρe+∇⋅J=0
由于准电中性,体相电场通常不满足麦克斯韦方程,特别是在均匀的中性电解质中,电场的变化非常小,基本可以忽略。
4. 支持电解质
在许多情况下,人们希望使活性离子 i = 1 i = 1 i=1的扩散成为主导,而避免显著的电迁移。这可以通过添加大量的其他惰性离子(支持电解质)来实现。这些惰性离子的浓度远高于活性离子,其浓度在电流通过时几乎保持不变,从而大大减小了电场,电迁移几乎可以忽略,而对流和扩散占主导地位:
∂ c 1 ∂ t + u ⃗ ⋅ ∇ c 1 = D 1 ∇ 2 c 1 \frac{\partial c_1}{\partial t} + \vec{u} \cdot \nabla c_1 = D_1 \nabla^2 c_1 ∂t∂c1+u⋅∇c1=D1∇2c1
5. 二元电解质
考虑一个具有阳离子 z + e z_+ e z+e和阴离子 − z − e -z_- e −z−e的体相二元电解质。准中性允许我们定义体相盐浓度:
c = z + c + = z − c − c = z_+ c_+ = z_- c_- c=z+c+=z−c−
在稀溶液极限中( D chem , i = D i = 常数 , a i = c i D_{\text{chem},i} = D_i = \text{常数}, a_i = c_i Dchem,i=Di=常数,ai=ci),NP守恒方程为:
∂ c ± ∂ t = D i ∇ 2 c i ± ∇ ⋅ ( c ± ∇ ϕ ~ ) \frac{\partial c_{\pm}}{\partial t} = D_i \nabla^2 c_i \pm \nabla \cdot (c_{\pm} \nabla \tilde{\phi}) ∂t∂c±=Di∇2ci±∇⋅(c±∇ϕ~)
通过减去这些方程,可以得到电荷守恒的条件:
∂ ρ e ∂ t = z + ∂ c + ∂ t − z − ∂ c − ∂ t = 0 \frac{\partial \rho_e}{\partial t} = z_+ \frac{\partial c_+}{\partial t} - z_- \frac{\partial c_-}{\partial t} = 0 ∂t∂ρe=z+∂t∂c+−z−∂t∂c−=0
通过对这些方程相加,可以得到中性盐的守恒条件:
∂ c ∂ t = D ∇ 2 c \frac{\partial c}{\partial t} = D \nabla^2 c ∂t∂c=D∇2c
其中有效的双极扩散率 D D D 为:
D = ( z + + z − ) D + D − z + D + + z − D − D = \frac{(z_+ + z_-) D_+ D_-}{z_+ D_+ + z_- D_-} D=z+D++z−D−(z++z−)D+D−
这一结果显示了盐浓度的扩散行为,即使每种离子在电场中以相反方向迁移。
双极扩散率可以用更具启发性的形式来表达。它是单个离子扩散剂的调和平均值,由相反物质的电荷加权,
1 D = ( z + z + + z − ) 1 D − + ( z − z + + z − ) 1 D + \frac{1}{D}=\left(\frac{z_+}{z_++z_-}\right)\frac{1}{D_-}+\left(\frac{z_-}{z_++z_-}\right)\frac{1}{D_+} D1=(z++z−z+)D−1+(z++z−z−)D+1
它由具有较小扩散率和/或较小电荷的离子主导。原因是扩散较快或带电较高的离子对库仑力的响应更快,将其吸引到速度较慢、带电较少的离子,从而控制中性溶液的有效扩散率。这一事实也可以通过将双极扩散率写为离子扩散率的算术平均值来理解,并由相反物质的场迁移率加权,
D
=
M
+
D
−
+
M
−
D
+
M
+
+
M
−
D = \frac{M_+ D_- + M_- D_+}{M_+ + M_-}
D=M++M−M+D−+M−D+
其中, M i = z i e M i = z i e D i / k B T M_i = z_i e M_i = z_i e D_i / k_B T Mi=zieMi=zieDi/kBT是每个电场的漂移速度。 ( M i M_i Mi 是单位静电力的速度, z i e E z_ieE zieE。)
6. 总结
- Nernst-Planck 方程:描述了浓溶液中离子的迁移和扩散。
- 电解质中的电荷传输:电流有三种贡献,包括对流、扩散和电迁移。
- 体相电中性:电解质在体相区域趋于准中性,可以简化计算。
- 支持电解质:通过添加大量惰性离子来减少电迁移的影响。
- 二元电解质:分析了二元电解质中的电荷和盐浓度守恒,定义了有效的双极扩散率。
7. 补充
(一)常见的守恒方程
守恒方程(Conservation Equations)是描述物理系统中某些物理量(如质量、动量、能量等)在空间和时间上保持守恒的数学表达式。这些方程源于物理学中的守恒定律,常见的守恒方程有质量守恒、动量守恒、能量守恒等。它们可以用来描述流体力学、电动力学、热力学等领域中的基本物理过程。
常见的守恒方程
1. 质量守恒方程
质量守恒定律(Continuity Equation)表明质量既不会凭空产生,也不会凭空消失。在流体力学中,质量守恒方程常被写为:
∂
ρ
∂
t
+
∇
⋅
(
ρ
u
)
=
0
\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0
∂t∂ρ+∇⋅(ρu)=0
其中:
- ρ \rho ρ 是密度,
- u \mathbf{u} u 是速度场,
- ∇ ⋅ ( ρ u ) \nabla \cdot (\rho \mathbf{u}) ∇⋅(ρu) 是质量流通量的散度。
该方程意味着流体在一个封闭系统中,任意体积元素内的质量变化率等于质量流入流出的净变化。
2. 动量守恒方程
动量守恒方程基于牛顿第二定律,表明系统的总动量在没有外力的情况下是守恒的。方程形式为:
∂
(
ρ
u
)
∂
t
+
∇
⋅
(
ρ
u
u
)
=
−
∇
p
+
f
\frac{\partial (\rho \mathbf{u})}{\partial t} + \nabla \cdot (\rho \mathbf{u} \mathbf{u}) = -\nabla p + \mathbf{f}
∂t∂(ρu)+∇⋅(ρuu)=−∇p+f
其中:
- ρ u \rho \mathbf{u} ρu 是动量密度,
- ∇ p \nabla p ∇p 是压力梯度力,
- f \mathbf{f} f 是外力(如重力)。
该方程描述的是在一个流体中,动量随着时间和空间的变化,如何在压力、速度场和外力的作用下发生变化。
3. 能量守恒方程
能量守恒定律表明系统的总能量(包括动能、势能、热能等)在没有外界输入或输出的情况下是守恒的。在流体力学中,能量守恒方程的常见形式为:
∂
(
ρ
E
)
∂
t
+
∇
⋅
[
u
(
ρ
E
+
p
)
]
=
u
⋅
f
+
∇
⋅
(
κ
∇
T
)
\frac{\partial (\rho E)}{\partial t} + \nabla \cdot \left[ \mathbf{u} (\rho E + p) \right] = \mathbf{u} \cdot \mathbf{f} + \nabla \cdot (\kappa \nabla T)
∂t∂(ρE)+∇⋅[u(ρE+p)]=u⋅f+∇⋅(κ∇T)
其中:
- E E E 是总能量密度,
- p p p 是压力,
- κ \kappa κ 是热传导系数,
- T T T 是温度。
这个方程表示系统的总能量变化与热传导、功以及外力作用下的能量变化有关。
4. 电荷守恒方程
电荷守恒定律表明,在一个封闭系统中,总电荷量保持不变。电荷守恒方程的积分形式为:
d
Q
d
t
=
0
\frac{dQ}{dt} = 0
dtdQ=0
其微分形式为连续性方程:
∂
ρ
e
∂
t
+
∇
⋅
J
=
0
\frac{\partial \rho_e}{\partial t} + \nabla \cdot \mathbf{J} = 0
∂t∂ρe+∇⋅J=0
其中:
- ρ e \rho_e ρe 是电荷密度,
- J \mathbf{J} J 是电流密度。
这个方程描述的是电荷的分布和流动情况,表明电荷不会凭空产生或消失,只能在空间中移动。
守恒方程的一般形式
守恒方程通常可以写成统一的形式:
∂
φ
∂
t
+
∇
⋅
J
φ
=
S
φ
\frac{\partial \varphi}{\partial t} + \nabla \cdot \mathbf{J}_{\varphi} = S_{\varphi}
∂t∂φ+∇⋅Jφ=Sφ
其中:
- φ \varphi φ 是待守恒的物理量密度(如质量密度、动量密度、能量密度等),
- J φ \mathbf{J}_{\varphi} Jφ 是对应的流通量(如质量流、动量流、能量流等),
- S φ S_{\varphi} Sφ 是源项,表示物理量的生成或消耗。
这类方程表明物理量的变化可以由它在空间中的流动和源项来描述。
结论
守恒方程是物理学中的基本工具,它们揭示了自然界中各种物理量在不同条件下的守恒特性。通过它们可以深入理解流体、气体、电场、磁场以及其他复杂系统中的基本动力学行为。
(二)添加惰性粒子减小电场的现象
添加惰性粒子减小电场的现象可以从电荷分布和电场屏蔽的角度来解释。主要的机制包括介电常数的变化和电荷屏蔽效应。下面我们详细说明:
1. 介电常数的变化(电介质效应)
当在电场中引入惰性粒子时,惰性粒子往往属于电介质材料,它们可以极化,导致整体介电常数发生变化。
- 电介质的极化:电介质中的惰性粒子会在外加电场作用下极化,内部的正负电荷会发生微小的位移。这种极化效应会在材料内部形成微小的“感应电场”,该感应电场与外加电场方向相反,从而抵消外加电场的一部分。
- 介电常数的影响:加入电介质后,系统的有效介电常数增加。电场
E
\mathbf{E}
E 与介电常数
ε
\varepsilon
ε 之间的关系为:
E = E 0 ε \mathbf{E} = \frac{\mathbf{E_0}}{\varepsilon} E=εE0
其中 E 0 \mathbf{E_0} E0 是原始电场, ε \varepsilon ε 是系统的介电常数。随着介电常数 ε \varepsilon ε 增加,电场强度 E \mathbf{E} E 减小。
2. 电荷屏蔽效应
惰性粒子可以通过电荷屏蔽效应减弱电场,尤其是在导电介质中或者带电粒子之间相互作用的系统中。
- 惰性粒子(如带电离子)对电场的影响:在电解质溶液或等离子体中,惰性粒子(例如带电的离子或导电粒子)会重新分布,从而形成反向电荷云。这种反向电荷云可以有效屏蔽原始电荷源产生的电场,导致远处观察到的电场减小。这是类似于“德拜屏蔽”的过程,在电解质溶液或等离子体中非常常见。
- 电荷重新分布:当惰性粒子是导电粒子时,它们可以重新分布电荷。因为导电粒子会在外加电场下重新分布自身的电荷,反向电荷的聚集会对外加电场产生抵消作用,进一步削弱电场强度。
3. 经典例子:电解质溶液中的电场减弱
在电解质溶液中,加入惰性粒子(如盐离子)会使电场强度减弱。其原因是溶液中的带电惰性粒子,如阳离子和阴离子,会在电场的作用下移动,形成对电场源的屏蔽效应。这类似于等离子体中的德拜屏蔽效应:
- 这种屏蔽效应由带电粒子聚集在外加电荷周围形成的反向电场引起。
- 德拜长度是衡量这种屏蔽效应的典型长度尺度,表示电场衰减的程度。
4. 惰性粒子作为中性物质的影响
如果惰性粒子是电中性的,尽管它们没有直接参与电荷转移或生成额外的电荷,它们的存在会改变电场的介质性质(如介电常数)。这些中性惰性粒子可以通过改变系统的介电常数,从而减小系统整体的电场强度。
总结
- 介电效应:惰性粒子的极化会产生感应电场,部分抵消外加电场。
- 电荷屏蔽效应:带电的惰性粒子重新分布,形成电荷云,屏蔽外加电场。
- 介质常数增加:惰性粒子的加入增加了系统的介电常数,削弱了电场强度。
因此,加入惰性粒子会减小电场强度是因为它们通过改变介电性质或产生屏蔽效应来抵消一部分电场。
(三)有效双极扩散率推导
这个公式描述了两种离子的有效扩散系数 D D D,其中 D + D_+ D+ 和 D − D_- D− 分别代表正离子和负离子的扩散系数,而 z + z_+ z+ 和 z − z_- z− 是正负离子的电荷数。
为了推导这个公式,我们可以通过电中性条件和流体力学平衡的角度来理解。
步骤 1: 平衡状态下的离子流动
在考虑离子扩散和电场下的漂移时,正负离子的电流密度必须保持平衡。假设系统中存在正离子和负离子,并且两种离子分别具有不同的扩散系数 D + D_+ D+ 和 D − D_- D−,以及不同的电荷数 z + z_+ z+ 和 z − z_- z−。
根据经典的Nernst-Planck 方程,离子的总电流 J i J_i Ji 可以分为扩散项和漂移项:
J i = − D i ∇ c i + z i e c i ∇ ϕ J_i = -D_i \nabla c_i + z_i e c_i \nabla \phi Ji=−Di∇ci+zieci∇ϕ
其中:
- (D_i) 是第 (i) 种离子的扩散系数,
- (c_i) 是第 (i) 种离子的浓度,
- (z_i) 是离子的电荷数,
- (\phi) 是电势,
- (e) 是基本电荷。
在平衡状态下,离子电流保持不变,即正负离子的电流和应相等,满足:
z + J + + z − J − = 0 z_+ J_+ + z_- J_- = 0 z+J++z−J−=0
步骤 2: 使用爱因斯坦关系
根据爱因斯坦关系,扩散系数 (D_i) 与电迁移率 (M_i) 有以下关系:
M i = D i k B T M_i = \frac{D_i}{k_B T} Mi=kBTDi
其中 (k_B) 是玻尔兹曼常数,(T) 是温度。
步骤 3: 平衡电流方程
正负离子的电流分别为:
J
+
=
−
D
+
∇
c
+
+
z
+
e
c
+
∇
ϕ
J_+ = -D_+ \nabla c_+ + z_+ e c_+ \nabla \phi
J+=−D+∇c++z+ec+∇ϕ
J
−
=
−
D
−
∇
c
−
+
z
−
e
c
−
∇
ϕ
J_- = -D_- \nabla c_- + z_- e c_- \nabla \phi
J−=−D−∇c−+z−ec−∇ϕ
根据电中性条件,正负离子的流动电流必须相等且方向相反:
z + J + + z − J − = 0 z_+ J_+ + z_- J_- = 0 z+J++z−J−=0
带入电流表达式:
z + ( − D + ∇ c + + z + e c + ∇ ϕ ) + z − ( − D − ∇ c − + z − e c − ∇ ϕ ) = 0 z_+ (-D_+ \nabla c_+ + z_+ e c_+ \nabla \phi) + z_- (-D_- \nabla c_- + z_- e c_- \nabla \phi) = 0 z+(−D+∇c++z+ec+∇ϕ)+z−(−D−∇c−+z−ec−∇ϕ)=0
忽略电场外部干扰后,解这组方程,我们可以得到以下形式的有效扩散系数 (D):
步骤 4: 推导结果
最后,我们得到有效扩散系数 (D) 的表达式:
D = ( z + + z − ) D + D − z + D + + z − D − D = \frac{(z_+ + z_-) D_+ D_-}{z_+ D_+ + z_- D_-} D=z+D++z−D−(z++z−)D+D−
这个公式说明了两种带电离子的扩散系数之间的加权平均,权重由离子的电荷数 z + z_+ z+ 和 z − z_- z− 以及它们的扩散系数 D + D_+ D+ 和 D − D_- D− 决定。
(四)Nernst-Planck方程
Nernst-Planck方程(Nernst-Planck Equation)是描述带电离子在扩散、电场作用下迁移的基本方程,广泛应用于电化学、膜科学、生物物理等领域。它结合了扩散、电迁移(漂移)和对流(如果涉及流体)三种机制,描述离子的通量与浓度、电势等之间的关系。
Nernst-Planck方程的形式
对于某种离子(带电物质),Nernst-Planck方程可以写为:
J i = − D i ∇ c i + z i e M i c i ∇ ϕ + c i v \mathbf{J}_i=-D_i\nabla c_i+z_ieM_ic_i\nabla \phi+c_i\mathbf{v} Ji=−Di∇ci+zieMici∇ϕ+civ
其中:
- J i \mathbf{J}_i Ji:第 i i i 种离子的总通量,单位通常是 mol/m 2 ⋅ s \text{mol/m}^2\cdot\text{s} mol/m2⋅s 或 C/m 2 ⋅ s \text{C/m}^2\cdot\text{s} C/m2⋅s。
- D i D_i Di:第 i i i 种离子的扩散系数,单位是 m 2 / s \text{m}^2/\text{s} m2/s。
- c i c_i ci:第 i i i 种离子的浓度,单位是 mol/m 3 \text{mol/m}^3 mol/m3。
- z i z_i zi:第 i i i 种离子的电荷数,即该离子携带的电荷数倍数。
- e e e:基本电荷,约为 1.602 × 1 0 − 19 1.602\times 10^{-19} 1.602×10−19 C。
- M i M_i Mi:第 i i i 种离子的迁移率,其与扩散系数 D i D_i Di 通过爱因斯坦关系 M i = D i k B T M_i=\frac{D_i}{k_BT} Mi=kBTDi 相联系。
- ∇ ϕ \nabla \phi ∇ϕ:电势梯度(即电场 E = − ∇ ϕ \mathbf{E}=-\nabla \phi E=−∇ϕ)。
- v \mathbf{v} v:流体速度矢量(若有流体对流)。
- k B k_B kB:玻尔兹曼常数。
- T T T:温度。
Nernst-Planck方程的三项解释
-
扩散项: − D i ∇ c i -D_i\nabla c_i −Di∇ci 描述离子由于浓度梯度产生的扩散。离子会从高浓度区域向低浓度区域移动,这是扩散的基本动力学。
-
电迁移项: z i e M i c i ∇ ϕ z_ieM_ic_i\nabla \phi zieMici∇ϕ 描述离子在电场作用下的漂移。电场对带电粒子施加力,正电荷在电场方向上移动,负电荷则反方向移动。这个过程称为电迁移(或电漂移)。
-
对流项: c i v c_i\mathbf{v} civ 解释了离子随流体流动的对流效应。这个项通常用在有明显液体流动的系统中,例如在带有流体流动的电解质溶液中。
简化形式
在许多应用中,可以忽略某些效应,从而得到简化形式:
-
无对流项:如果系统中没有流体流动( v = 0 \mathbf{v}=0 v=0),则方程简化为:
J i = − D i ∇ c i + z i e M i c i ∇ ϕ \mathbf{J}_i=-D_i\nabla c_i+z_ieM_ic_i\nabla \phi Ji=−Di∇ci+zieMici∇ϕ -
稳态情况下:如果系统达到稳态,离子通量不随时间变化,则可以与泊松方程联立使用,描述离子浓度、电场与电势的分布。
-
等温条件:在温度均匀的等温系统中,离子的扩散系数和迁移率是常数。
与泊松方程的结合
为了描述带电离子在电场中的行为,Nernst-Planck方程常与泊松方程联立使用。泊松方程描述了电势 ϕ \phi ϕ 与电荷密度 ρ e \rho_e ρe 之间的关系:
∇ 2 ϕ = − ρ e ε \nabla^2\phi=-\frac{\rho_e}{\varepsilon} ∇2ϕ=−ερe
其中:
- ρ e \rho_e ρe 是电荷密度,由正负离子的浓度差决定;
- ε \varepsilon ε 是介电常数。
通过泊松方程,电势 ϕ \phi ϕ 和离子的分布通过 ρ e = ∑ i z i e c i \rho_e=\sum_iz_iec_i ρe=∑izieci 相互关联。
Nernst-Planck方程的应用
Nernst-Planck方程在许多科学领域有广泛应用,以下是一些常见的例子:
-
电化学系统:如电池、燃料电池、离子交换膜,离子的扩散和电迁移决定了电极反应和能量转换效率。
-
膜分离:如反渗透、纳滤等膜技术,Nernst-Planck方程用于描述通过膜的离子迁移行为。
-
生物膜:在生物系统中,离子通过细胞膜的运动(如钠、钾泵)可以通过Nernst-Planck方程描述。
-
半导体物理:电子和空穴在电场和浓度梯度下的运动也可以通过类似的方程描述。
总结
Nernst-Planck方程是描述离子在扩散和电场作用下迁移的基本工具。通过结合扩散、电迁移和对流项,它能够全面刻画离子在不同场合下的运动行为。在很多实际应用中,这个方程与泊松方程或连续性方程联立使用,来描述电解质、半导体或生物膜等系统的动力学行为。