P8:YOLOv5-C3模块实现

🍨 本文为🔗365天深度学习训练营 中的学习记录博客
🍦 参考文章:Pytorch实战 | 第P8周:YOLOv5-C3模块实现
🍖 原作者:K同学啊|接辅导、项目定制

Z. 心得体会

  • YOLOv5模型介绍
    在这里插入图片描述
    YOLOv5模型:宏观来看,这个模型是一个单输入,三个输出的模型;具体来看,主要由C3、SPPF、ConvBNSiLU构成,外加一个额外的detect。下面来详细讲一下每个模块都是什么结构。
    (1)Conv模块:(conv+Batch Normalization+SiLU),也有文章称其为CBS。也就是下面代码中的Conv模块
    (2)C3模块:(C3用到了多次的bottleneck),也就是下面代码中的C3模块
    (3)其他模块:SPPF模块、Detect模块(但本例中好像都没有涉及)
    模型总结:
    本质就是一个前向、不断下采样的一个模型,只不过在下采样过程中用了略微复杂的结构和层,再通过fpn进行上采样和堆叠,得到多个不同尺寸的输出。
    来源:https://zhuanlan.zhihu.com/p/583909493

一、前期准备

1. 设置GPU

import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision
from torchvision import transforms, datasets

import os,PIL,pathlib,warnings

warnings.filterwarnings('ignore')

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

device
device(type='cuda')

2. 导入数据

import os, PIL, random, pathlib

data_dir = 'C:/Users/Dell/Desktop/ML-K/P8/第5天/weather_photos/'
data_dir = pathlib.Path(data_dir)

data_paths = list(data_dir.glob('*'))
classeNames = [str(path).split('\\')[-1] for path in data_paths]
classeNames
['cloudy', 'rain', 'shine', 'sunrise']
train_transforms = transforms.Compose([
    transforms.Resize([224, 224]), #将图片resize成统一尺寸
    transforms.ToTensor(), #将PIL Image或numpy.ndarray转换成tensor,并归一化到[0, 1]之间
    transforms.Normalize( #标准化处理,使模型更容易收敛
        mean=[0.485, 0.456, 0.406],
        std=[0.229, 0.224, 0.225]) #其中mean和std是从数据集中随机抽样计算得到的
])

test_transforms = transforms.Compose([
    transforms.Resize([224, 224]), #将图片resize成统一尺寸
    transforms.ToTensor(), #将PIL Image或numpy.ndarray转换成tensor,并归一化到[0, 1]之间
    transforms.Normalize( #标准化处理,使模型更容易收敛
        mean=[0.485, 0.456, 0.406],
        std=[0.229, 0.224, 0.225]) #其中mean和std是从数据集中随机抽样计算得到的
])

total_data = datasets.ImageFolder('C:/Users/Dell/Desktop/ML-K/P8/第5天/weather_photos/', transform = train_transforms)
total_data
Dataset ImageFolder
    Number of datapoints: 1125
    Root location: C:/Users/Dell/Desktop/ML-K/P8/第5天/weather_photos/
    StandardTransform
Transform: Compose(
               Resize(size=[224, 224], interpolation=bilinear, max_size=None, antialias=None)
               ToTensor()
               Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
           )
total_data.class_to_idx

{‘cloudy’: 0, ‘rain’: 1, ‘shine’: 2, ‘sunrise’: 3}

3. 划分数据集

train_size = int(0.8 * len(total_data))
test_size = len(total_data) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])
train_dataset, test_dataset
(<torch.utils.data.dataset.Subset at 0x1a6adfe53a0>,
 <torch.utils.data.dataset.Subset at 0x1a6adfe57c0>)
batch_size = 4

train_dl = torch.utils.data.DataLoader(train_dataset,
                                      batch_size=batch_size,
                                      shuffle=True,
                                      num_workers=1)
test_dl = torch.utils.data.DataLoader(test_dataset, 
                                     batch_size=batch_size,
                                     shuffle=True,
                                     num_workers=1)
for X, y in test_dl:
    print('shape of X [N, C, H, W]: ', X.shape)
    print('shape of y: ', y.shape, y.dtype)
    break
shape of X [N, C, H, W]:  torch.Size([4, 3, 224, 224])
shape of y:  torch.Size([4]) torch.int64

二、 构建包含C3模块的模型

1. 搭建模型

import torch.nn.functional as F

def autopad(k, p=None): # kernel, padding
    # Pad to 'same'
    if p is None:
        p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad
    return p

class Conv(nn.Module):
    # Standard convolution
    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
        super().__init__()
        self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias =False)
        self.bn = nn.BatchNorm2d(c2)
        self.act = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())
        
    def forward(self, x):
        return self.act(self.bn(self.conv(x)))
    
class Bottleneck(nn.Module):
    # Standard bottleneck
    def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion
        super().__init__()
        c_ = int(c2 * e) # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c_, c2, 3, 1, g=g)
        self.add = shortcut and c1 == c2
        
    def forward(self, x):
        return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))  

class C3(nn.Module):
    # CSP Bottleneck with 3 convolutions
    def __init__(self, c1, c2, n=1, shortcut = True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
        super().__init__()
        c_ = int(c2 * e) # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c1, c_, 1, 1)
        self.cv3 = Conv(2 * c_, c2, 1) # act=FReLU(c2)
        self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
        
    def forward(self, x):
        return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), dim = 1))
    
class model_K(nn.Module):
    def __init__(self):
        super(model_K, self).__init__()
        
        #卷积模块
        self.Conv = Conv(3, 32, 3, 2)
        
        #C3模块1
        self.C3_1 = C3(32, 64, 3, 2)
        
        #全连接网络层,用于分类
        self.classifier = nn.Sequential(
            nn.Linear(in_features=802816, out_features=100),
            nn.ReLU(),
            nn.Linear(in_features = 100, out_features = 4)
        )
        
    def forward(self, x):
        x = self.Conv(x)
        x = self.C3_1(x)
        x = torch.flatten(x, start_dim = 1)
        x = self.classifier(x)
        
        return x
    
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print('Using {} device'.format(device))

model = model_K().to(device)
model
Using cuda device
model_K(
  (Conv): Conv(
    (conv): Conv2d(3, 32, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
    (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (act): SiLU()
  )
  (C3_1): C3(
    (cv1): Conv(
      (conv): Conv2d(32, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act): SiLU()
    )
    (cv2): Conv(
      (conv): Conv2d(32, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act): SiLU()
    )
    (cv3): Conv(
      (conv): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act): SiLU()
    )
    (m): Sequential(
      (0): Bottleneck(
        (cv1): Conv(
          (conv): Conv2d(32, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act): SiLU()
        )
        (cv2): Conv(
          (conv): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act): SiLU()
        )
      )
      (1): Bottleneck(
        (cv1): Conv(
          (conv): Conv2d(32, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act): SiLU()
        )
        (cv2): Conv(
          (conv): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act): SiLU()
        )
      )
      (2): Bottleneck(
        (cv1): Conv(
          (conv): Conv2d(32, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act): SiLU()
        )
        (cv2): Conv(
          (conv): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act): SiLU()
        )
      )
    )
  )
  (classifier): Sequential(
    (0): Linear(in_features=802816, out_features=100, bias=True)
    (1): ReLU()
    (2): Linear(in_features=100, out_features=4, bias=True)
  )
)

2. 查看模型详情

import torchsummary as summary
summary.summary(model, (3, 224, 224))
----------------------------------------------------------------
        Layer (type)               Output Shape         Param #
================================================================
            Conv2d-1         [-1, 32, 112, 112]             864
       BatchNorm2d-2         [-1, 32, 112, 112]              64
              SiLU-3         [-1, 32, 112, 112]               0
              Conv-4         [-1, 32, 112, 112]               0
            Conv2d-5         [-1, 32, 112, 112]           1,024
       BatchNorm2d-6         [-1, 32, 112, 112]              64
              SiLU-7         [-1, 32, 112, 112]               0
              Conv-8         [-1, 32, 112, 112]               0
            Conv2d-9         [-1, 32, 112, 112]           1,024
      BatchNorm2d-10         [-1, 32, 112, 112]              64
             SiLU-11         [-1, 32, 112, 112]               0
             Conv-12         [-1, 32, 112, 112]               0
           Conv2d-13         [-1, 32, 112, 112]           9,216
      BatchNorm2d-14         [-1, 32, 112, 112]              64
             SiLU-15         [-1, 32, 112, 112]               0
             Conv-16         [-1, 32, 112, 112]               0
       Bottleneck-17         [-1, 32, 112, 112]               0
           Conv2d-18         [-1, 32, 112, 112]           1,024
      BatchNorm2d-19         [-1, 32, 112, 112]              64
             SiLU-20         [-1, 32, 112, 112]               0
             Conv-21         [-1, 32, 112, 112]               0
           Conv2d-22         [-1, 32, 112, 112]           9,216
      BatchNorm2d-23         [-1, 32, 112, 112]              64
             SiLU-24         [-1, 32, 112, 112]               0
             Conv-25         [-1, 32, 112, 112]               0
       Bottleneck-26         [-1, 32, 112, 112]               0
           Conv2d-27         [-1, 32, 112, 112]           1,024
      BatchNorm2d-28         [-1, 32, 112, 112]              64
             SiLU-29         [-1, 32, 112, 112]               0
             Conv-30         [-1, 32, 112, 112]               0
           Conv2d-31         [-1, 32, 112, 112]           9,216
      BatchNorm2d-32         [-1, 32, 112, 112]              64
             SiLU-33         [-1, 32, 112, 112]               0
             Conv-34         [-1, 32, 112, 112]               0
       Bottleneck-35         [-1, 32, 112, 112]               0
           Conv2d-36         [-1, 32, 112, 112]           1,024
      BatchNorm2d-37         [-1, 32, 112, 112]              64
             SiLU-38         [-1, 32, 112, 112]               0
             Conv-39         [-1, 32, 112, 112]               0
           Conv2d-40         [-1, 64, 112, 112]           4,096
      BatchNorm2d-41         [-1, 64, 112, 112]             128
             SiLU-42         [-1, 64, 112, 112]               0
             Conv-43         [-1, 64, 112, 112]               0
               C3-44         [-1, 64, 112, 112]               0
           Linear-45                  [-1, 100]      80,281,700
             ReLU-46                  [-1, 100]               0
           Linear-47                    [-1, 4]             404
================================================================
Total params: 80,320,536
Trainable params: 80,320,536
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.57
Forward/backward pass size (MB): 150.06
Params size (MB): 306.40
Estimated Total Size (MB): 457.04
----------------------------------------------------------------

三、训练模型

1. 编写训练函数

def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)
    num_batches = len(dataloader)
    
    train_loss, train_acc = 0, 0
    
    for X, y in dataloader: #获取图片以及标签
        X, y = X.to(device), y.to(device)
        
        pred = model(X)
        loss = loss_fn(pred, y)
        
        #反向传播
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        
        train_acc += (pred.argmax(1) == y).type(torch.float).sum().item()
        train_loss += loss.item()
        
    train_acc /= size
    train_loss /= num_batches
    
    return train_acc, train_loss

2. 编写测试函数

def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)
    num_batches = len(dataloader)
    
    train_loss, train_acc = 0, 0
    
    for X, y in dataloader: #获取图片以及标签
        X, y = X.to(device), y.to(device)
        
        pred = model(X)
        loss = loss_fn(pred, y)
        
        #反向传播
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        
        train_acc += (pred.argmax(1) == y).type(torch.float).sum().item()
        train_loss += loss.item()
        
    train_acc /= size
    train_loss /= num_batches
    
    return train_acc, train_loss

3. 正式训练

import copy

optimizer = torch.optim.Adam(model.parameters(), lr = 1e-4)
loss_fn = nn.CrossEntropyLoss() #创建损失函数

epochs = 20

train_loss = []
train_acc = []
test_loss = []
test_acc = []

best_acc = 0 #设置一个最佳准确率,作为最佳模型的判别指标

for epoch in range(epochs):
    #更新学习率(使用自定义学习率时使用)
    #adjust_learning_rate(optimizer, epoch, learn_rate)
    
    model.train()
    epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, optimizer)
    #scheduler.step() #更新学习率(调用官方动态学习率接口时使用)
    
    model.eval()
    epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
    
    #保存最佳模型到best_model
    if epoch_test_acc > best_acc:
        best_acc = epoch_test_acc
        best_model = copy.deepcopy(model)
    
    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)
    
    #获取当前的学习率
    lr = optimizer.state_dict()['param_groups'][0]['lr']
    template = ('Epoch: {:2d}. Train_acc: {:.1f}%, Train_loss: {:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}, Lr: {:.2E}')
    print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss, lr))

PATH = './best_model.pth'
torch.save(model.state_dict(), PATH)


print('Done')
Epoch:  1. Train_acc: 69.8%, Train_loss: 1.319, Test_acc:88.4%, Test_loss:0.312, Lr: 1.00E-04
Epoch:  2. Train_acc: 84.6%, Train_loss: 0.530, Test_acc:87.1%, Test_loss:0.522, Lr: 1.00E-04
Epoch:  3. Train_acc: 91.3%, Train_loss: 0.299, Test_acc:84.9%, Test_loss:0.429, Lr: 1.00E-04
Epoch:  4. Train_acc: 94.0%, Train_loss: 0.194, Test_acc:90.7%, Test_loss:0.334, Lr: 1.00E-04
Epoch:  5. Train_acc: 94.2%, Train_loss: 0.172, Test_acc:91.1%, Test_loss:0.348, Lr: 1.00E-04
Epoch:  6. Train_acc: 98.0%, Train_loss: 0.056, Test_acc:88.0%, Test_loss:0.554, Lr: 1.00E-04
Epoch:  7. Train_acc: 98.9%, Train_loss: 0.047, Test_acc:86.7%, Test_loss:0.578, Lr: 1.00E-04
Epoch:  8. Train_acc: 97.3%, Train_loss: 0.107, Test_acc:81.3%, Test_loss:0.711, Lr: 1.00E-04
Epoch:  9. Train_acc: 99.1%, Train_loss: 0.039, Test_acc:90.7%, Test_loss:0.390, Lr: 1.00E-04
Epoch: 10. Train_acc: 98.7%, Train_loss: 0.049, Test_acc:86.7%, Test_loss:0.580, Lr: 1.00E-04
Epoch: 11. Train_acc: 96.6%, Train_loss: 0.131, Test_acc:88.0%, Test_loss:0.832, Lr: 1.00E-04
Epoch: 12. Train_acc: 98.2%, Train_loss: 0.073, Test_acc:90.2%, Test_loss:0.515, Lr: 1.00E-04
Epoch: 13. Train_acc: 98.9%, Train_loss: 0.043, Test_acc:85.8%, Test_loss:0.792, Lr: 1.00E-04
Epoch: 14. Train_acc: 97.6%, Train_loss: 0.103, Test_acc:86.7%, Test_loss:0.646, Lr: 1.00E-04
Epoch: 15. Train_acc: 97.6%, Train_loss: 0.112, Test_acc:90.7%, Test_loss:0.641, Lr: 1.00E-04
Epoch: 16. Train_acc: 99.0%, Train_loss: 0.034, Test_acc:89.3%, Test_loss:0.365, Lr: 1.00E-04
Epoch: 17. Train_acc: 99.3%, Train_loss: 0.038, Test_acc:91.6%, Test_loss:0.384, Lr: 1.00E-04
Epoch: 18. Train_acc: 99.9%, Train_loss: 0.004, Test_acc:92.9%, Test_loss:0.448, Lr: 1.00E-04
Epoch: 19. Train_acc: 99.4%, Train_loss: 0.020, Test_acc:86.7%, Test_loss:0.901, Lr: 1.00E-04
Epoch: 20. Train_acc: 97.9%, Train_loss: 0.105, Test_acc:88.4%, Test_loss:0.639, Lr: 1.00E-04
Done

四、结果可视化

1. Loss与Accuracy图

import matplotlib.pyplot as plt

import warnings
warnings.filterwarnings('ignore')
plt.rcParams['font.sans-serif'] = ['SimHei'] #用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False #用来正常显示负号
plt.rcParams['figure.dpi'] = 100

epochs_range = range(epochs)

plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)

plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)

plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

在这里插入图片描述

2. 模型评估

best_model.eval()
epoch_test_acc, epoch_test_loss = test(test_dl, best_model, loss_fn)
epoch_test_acc, epoch_test_loss

(0.9288888888888889, 0.4481250044265371)

epoch_test_acc

0.9288888888888889

  • 0
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值