【SZU期末】大物慕课(下)
呜呜呜为什么会有大物慕课这种东西,要不是其他时间冲突了一定不选。
好难好难,听没有英文字幕的视频像听天书一样。
振动
常见词汇:
horizontal 水平的
amplitude 振幅
acceleration 加速度
phaseconstant 初相位
oscilation 振动
harmonic motion 简谐运动
常用公式
位移:
x
=
A
cos
(
ω
t
+
φ
0
)
x=A \cos \left(\omega t+\varphi_{0}\right)
x=Acos(ωt+φ0)
速度: v = d x d t = − A ω sin ( ω t + φ 0 ) v=\frac{d x}{d t}=-A \omega \sin \left(\omega t+\varphi_{0}\right) v=dtdx=−Aωsin(ωt+φ0)
振幅: A = x 0 2 + v 0 2 ω 2 A=\sqrt{x_{0}^{2}+\frac{v_{0}^{2}}{\omega^{2}}} A=x02+ω2v02
角频率: ω = k m = 2 π T \omega=\sqrt{\frac{k}{m}}=\frac{2 \pi}{T} ω=mk=T2π
初相: φ 0 \varphi_{0} \quad φ0 相位: ω t + φ 0 \omega t+\varphi_{0} ωt+φ0 tan φ 0 = − v 0 ω x 0 \tan \varphi_0=\frac{-v_{0}}{\omega x_{0}} tanφ0=ωx0−v0
周期: T = 2 π ω T=\frac{2 \pi}{\omega} \quad T=ω2π T = 2 π L g T=2 \pi \sqrt{\frac{L}{g}} T=2πgL
频率: f = 1 T = ω 2 π f=\frac{1}{T}=\frac{\omega}{2 \pi} f=T1=2πω
速度: v max = A ω \quad v_{\max }=A \omega vmax=Aω 加速度: a max = A ω 2 a_{\max }=A \omega^{2} amax=Aω2
机械能 = 动能十势能 E = 1 2 m v 2 + 1 2 k x 2 E=\frac{1}{2} m v^{2}+\frac{1}{2} k x^{2} E=21mv2+21kx2 E 总 = 1 2 k A 2 E_{\text {总 }}=\frac{1}{2} k A^{2} E总 =21kA2
弹簧串联: 1 k = 1 k 1 + 1 k 2 \frac{1}{k}=\frac{1}{k_{1}}+\frac{1}{k_{2}} k1=k11+k21 弹簧并联: k = k 1 + k 2 k=k_{1}+k_{2} k=k1+k2
对于同一简谐运动:
x
1
=
A
cos
(
ω
t
1
+
φ
)
x
2
=
A
cos
(
ω
t
2
+
φ
)
Δ
φ
=
(
ω
t
2
+
φ
)
−
(
ω
t
1
+
φ
)
Δ
t
=
t
2
−
t
1
=
Δ
φ
ω
\begin{array}{l} x_{1}=A \cos \left(\omega t_{1}+\varphi\right) \quad x_{2}=A \cos \left(\omega t_{2}+\varphi\right) \\ \Delta \varphi=\left(\omega t_{2}+\varphi\right)-\left(\omega t_{1}+\varphi\right) \\ \Delta t=t_{2}-t_{1}=\frac{\Delta \varphi}{\omega} \end{array}
x1=Acos(ωt1+φ)x2=Acos(ωt2+φ)Δφ=(ωt2+φ)−(ωt1+φ)Δt=t2−t1=ωΔφ
一些Mooc习题:
问题:电子以非相对论速度沿着z轴在+z方向上在接近零场的区域中移动。在t=0时,它到达原点<0,0,0>,并进入电场<0,0,,2X10^16V/m>的区域。你在<5,3,0>m的位置观察场。你首先观察辐射场是什么?
分析: 辐射场将以光速传播。假设观测点为P,原点为O。那么距离OP将为 ( 5 ∗ 5 + 3 ∗ 3 ) = 5.83 m \sqrt {(5*5+3*3)}=5.83m (5∗5+3∗3)=5.83m,光覆盖所需时间 O P = 5.83 / 3 ∗ 1 0 8 = 0.19 OP=5.83/3*10^8=0.19 OP=5.83/3∗108=0.19纳秒,因此辐射将在0.19纳秒内被观测到。
问题: 假设一个特定的理想质量弹簧系统的周期是2秒,如果质量增加三倍,系统的周期会是多少?
分析: T ∝ m k s T \propto \sqrt{\frac{m}{k_{s}}} T∝ksm 2 ∗ 3 = 3.46 s 2*\sqrt3=3.46 s 2∗3=3.46s
要掌握旋转矢量法
简谐运动
常用词汇
pivoted 转动的
pendulum 钟摆
rod 杆
常用公式:
合外力矩 = 转动惯量 * 角加速度 M ⃗ = J α ⃗ \vec{M}=J \vec{\alpha} M=Jα
M ⃗ = r ⃗ × F ⃗ \vec{M}=\vec{r} \times \vec{F} M=r×F M = r F sin θ M=r F \sin \theta M=rFsinθ
单摆动力学分析:
M = − m g l sin θ ≈ − m g l θ M=-m g l \sin \theta \approx-m g l \theta M=−mglsinθ≈−mglθ
− m g l θ = J d 2 θ d t 2 -m g l \theta=J \frac{\mathrm{d}^{2} \theta}{\mathrm{d} t^{2}} −mglθ=Jdt2d2θ J = m l 2 J=m l^{2} J=ml2
d 2 θ d t 2 = − g l θ \frac{\mathrm{d}^{2} \theta}{\mathrm{d} t^{2}}=-\frac{g}{l} \theta\mathrm{} dt2d2θ=−lgθ ω 2 = g l \omega^{2}=\frac{g}{l} ω2=lg
θ = θ m cos ( ω t + φ ) \theta=\theta_{\mathrm{m}} \cos (\omega t+\varphi) θ=θmcos(ωt+φ)
T = 2 π ω = 2 π l g T=\frac{2 \pi}{\omega}=2 \pi \sqrt{\frac{l}{g}} T=ω2π=2πgl
复摆动力学分析:
− m g l θ = J d 2 θ d t 2 -m g l \theta=J \frac{\mathrm{d}^{2} \theta}{\mathrm{d} t^{2}} −mglθ=Jdt2d2θ
ω 2 = m g l J \omega^{2}=\frac{m g l}{J} ω2=Jmgl
T = 2 π ω = 2 π J m g l T=\frac{2 \pi}{\omega}=2 \pi \sqrt{\frac{J}{m g l}} T=ω2π=2πmglJ
简谐运动的合成
A = A 1 2 + A 2 2 + 2 A 1 A 2 cos ( φ 2 − φ 1 ) A=\sqrt{A_{1}^{2}+A_{2}^{2}+2 A_{1} A_{2} \cos \left(\varphi_{2}-\varphi_{1}\right)} A=A12+A22+2A1A2cos(φ2−φ1)
tan φ = A 1 sin φ 1 + A 2 sin φ 2 A 1 cos φ 1 + A 2 cos φ 2 \tan \varphi=\frac{A_{1} \sin \varphi_{1}+A_{2} \sin \varphi_{2}}{A_{1} \cos \varphi_{1}+A_{2} \cos \varphi_{2}} tanφ=A1cosφ1+A2cosφ2A1sinφ1+A2sinφ2
机械波
常用词汇:
propagation 传播
Longitudinal mechanical waves 纵向机械波
displacement 位移
phase 相位
- 横波:波传播方向上各点的振动方向与波传播方向垂直。
- 纵波:波传播方向上各点的振动方向与波传播方向平行。
- 简谐波: 波源及介质中各点均作简谐振动。
常用公式:
v
=
1
/
T
u
=
λ
T
=
λ
v
λ
=
u
v
=
T
u
v=1 / T \quad u=\frac{\lambda}{T}=\lambda v \quad \lambda=\frac{u}{v}=T u
v=1/Tu=Tλ=λvλ=vu=Tu
- P点振动落后于O点振动,落后的时间为 Δ t = t o − t p = x u \Delta t=t_o-t_p=\frac{x}{u} Δt=to−tp=ux
- P点振动落后于O点振动,落后的位相为 Δ φ = φ o − φ p = 2 π λ x \Delta \varphi=\varphi_o-\varphi_p= \frac{2\pi}{\lambda}x Δφ=φo−φp=λ2πx
- 波动方程:
y = A cos [ ω ( t − x u ) + φ 0 ] y=A \cos \left[\omega\left(t-\frac{x}{u}\right)+\varphi_{0}\right] y=Acos[ω(t−ux)+φ0] y = A cos [ 2 π ( f t − x λ ) + φ 0 ] y=A \cos \left[2 \pi\left( f t-\frac{x}{\lambda}\right)+\varphi_{0}\right] y=Acos[2π(ft−λx)+φ0] y = A cos [ ω t + φ 0 − 2 π λ ⋅ x ] y=A \cos \left[\omega t+\varphi_{0}-\frac{2 \pi}{\lambda} \cdot x\right] y=Acos[ωt+φ0−λ2π⋅x]
- 质元的振动速度,加速度:
v = ∂ y ∂ t = − ω A sin [ ω ( t − x u ) + φ ] v=\frac{\partial y}{\partial t}=-\omega A \sin \left[\omega\left(t-\frac{x}{u}\right)+\varphi\right] v=∂t∂y=−ωAsin[ω(t−ux)+φ] a = ∂ 2 y ∂ t 2 = − ω 2 A cos [ ω ( t − x u ) + φ ] = − ω 2 y a=\frac{\partial^{2} y}{\partial t^{2}}=-\omega^{2} A \cos \left[\omega\left(t-\frac{x}{u}\right)+\varphi\right]=-\omega^{2} y a=∂t2∂2y=−ω2Acos[ω(t−ux)+φ]=−ω2y
V
(
y
)
=
F
T
(
y
)
μ
=
F
T
(
y
)
M
/
L
=
μ
y
g
μ
=
y
g
V(y)=\sqrt{\frac{F_{T}(y)}{\mu}}=\sqrt{\frac{F_{T}(y)}{M/L}}=\sqrt{\frac{\mu yg}{\mu}}=\sqrt{yg}
V(y)=μFT(y)=M/LFT(y)=μμyg=yg
波动能量的传播
-
波长划分:
-
振动动能
d W k = 1 2 ( d m ) v 2 = 1 2 ( ρ d V ) v 2 \mathrm{d} W_{\mathrm{k}}=\frac{1}{2}(\mathrm{~d} m) v^{2}=\frac{1}{2}(\rho \mathrm{d} V) v^{2} dWk=21( dm)v2=21(ρdV)v2 y = A cos ω ( t − x u ) y=A \cos \omega\left(t-\frac{x}{u}\right) y=Acosω(t−ux) v = ∂ y ∂ t = − ω A sin ω ( t − x u ) v=\frac{\partial y}{\partial t}=-\omega A \sin \omega\left(t-\frac{x}{u}\right) v=∂t∂y=−ωAsinω(t−ux) d W k = 1 2 ρ d V A 2 ω 2 sin 2 ω ( t − x u ) \mathrm{d} W_{\mathrm{k}}=\frac{1}{2} \rho \mathrm{d} V A^{2} \omega^{2} \sin ^{2} \omega\left(t-\frac{x}{u}\right) dWk=21ρdVA2ω2sin2ω(t−ux) -
弹性势能
d W p = 1 2 k ( d y ) 2 \mathrm{d} W_{\mathrm{p}}=\frac{1}{2} k(\mathrm{~d} y)^{2} dWp=21k( dy)2 F S = E Δ l l \quad \frac{F}{S}=E \frac{\Delta l}{l} SF=ElΔl F = k Δ l F=k \Delta l F=kΔl k = S E l = S E d x k=\frac{S E}{l}=\frac{S E}{\mathrm{~d} x} k=lSE= dxSE
因此可以得出: d W p = 1 2 k ( d y ) 2 = 1 2 E S d x ( d y d x ) 2 = 1 2 ρ u 2 d V ( d y d x ) 2 = 1 2 ρ d V A 2 ω 2 sin 2 ω ( t − x u ) = d W k \begin{array}{c} \mathrm{d} W_{\mathrm{p}}=\frac{1}{2} k(\mathrm{~d} y)^{2} =\frac{1}{2} E S \mathrm{~d} x\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{2} \\ =\frac{1}{2} \rho u^{2} \mathrm{~d} V\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{2} \\ =\frac{1}{2} \rho \mathrm{d} V A^{2} \omega^{2} \sin ^{2} \omega\left(t-\frac{x}{u}\right)=d W_{k} \end{array} dWp=21k( dy)2=21ES dx( dxdy)2=21ρu2 dV( dxdy)2=21ρdVA2ω2sin2ω(t−ux)=dWk -
总机械能
d W = d W k + d W p = ρ d V A 2 ω 2 sin 2 ω ( t − x u ) \mathrm{d} W=\mathrm{d} W_{\mathrm{k}}+\mathrm{d} W_{\mathrm{p}}=\rho \mathrm{d} V A^{2} \omega^{2} \sin ^{2} \omega\left(t-\frac{x}{u}\right) dW=dWk+dWp=ρdVA2ω2sin2ω(t−ux) -
正弦波的平均功率
P a v g = 1 2 μ F ω 2 A 2 P_{a v g}=\frac{1}{2} \sqrt{\mu F} \omega^{2} A^{2} Pavg=21μFω2A2 -
波的强度
I = ε 0 c E 2 I= \varepsilon_{0} cE^{2} I=ε0cE2
( ε 0 = 8.85 × 1 0 − 12 c 2 N ⋅ m 2 \varepsilon_{0}=8. 85 \times 10^{-12} \frac{c^{2}}{\mathrm{N·m}^{2}} ε0=8.85×10−12N⋅m2c2)( E E E为电场强度)( c = 3 ∗ 1 0 8 c=3*10^8 c=3∗108)
I = P S = w ˉ u I=\frac{P}{S}=\bar{w} u I=SP=wˉu I = 1 2 ρ A 2 ω 2 u I=\frac{1}{2} \rho A^{2} \omega^{2} u I=21ρA2ω2u
折射率
波的衍射、干涉
波的衍射
波在传播过程中遇到障碍物,能绕过障碍物的边缘,在障碍物的阴影区内继续传播
波的干涉
频率相同、振动方向平行、相位相同或相位差恒定的两列波相遇时,使某些地方振动始终加强,而使另一些地方振动始终减弱的现象,称为波的干涉现象。
驻波
正向 : y 1 = A cos 2 π ( v t − x λ ) 负向 : y 2 = A cos 2 π ( v t + x λ ) 正向: y_{1}=A \cos 2 \pi\left(v t-\frac{x}{\lambda}\right) \\ 负向: y_{2}=A \cos 2 \pi\left(v t+\frac{x}{\lambda}\right) 正向:y1=Acos2π(vt−λx)负向:y2=Acos2π(vt+λx) y = y 1 + y 2 y=y_{1}+y_{2} y=y1+y2 = A cos 2 π ( v t − x λ ) + A cos 2 π ( v t + x λ ) =A \cos 2 \pi\left(v t-\frac{x}{\lambda}\right)+A \cos 2 \pi\left(v t+\frac{x}{\lambda}\right) =Acos2π(vt−λx)+Acos2π(vt+λx) = 2 A cos 2 π x λ cos 2 π v t =2 A \cos 2 \pi \frac{x}{\lambda} \cos 2 \pi v t =2Acos2πλxcos2πvt
-
a
当 cos 2 π λ x = 0 时 A ′ = 0 为波节 x = ( 2 k + 1 ) λ 4 ( λ 4 的奇数倍 ) 当 \cos \frac{2 \pi}{\lambda} x=0 时 A^{\prime}=0 为波节 \\ x=(2 k+1) \frac{\lambda}{4} \quad\left(\frac{\lambda}{4}\right. 的奇数倍) 当cosλ2πx=0时A′=0为波节x=(2k+1)4λ(4λ的奇数倍) -
b
当 cos 2 π λ x = ± 1 时 ∣ A ′ ∣ = 2 A 为波腹 x = 2 k λ 4 ( λ 4 的偶数倍 ) ( k = 0 , ± 1 , ± 2 , ⋯ ) 当 \cos \frac{2 \pi}{\lambda} x=\pm 1 时 \left|A^{\prime}\right|=2 A 为波腹\\ x=2 k \frac{\lambda}{4} \quad\left(\frac{\lambda}{4}\right. 的偶数倍) \\ (k=0, \pm 1, \pm 2, \cdots) 当cosλ2πx=±1时∣A′∣=2A为波腹x=2k4λ(4λ的偶数倍)(k=0,±1,±2,⋯)
-
边界条件
驻波一般由入射、反射波叠加而成,反射发生在两介质交界面上,在交界面处出现波节还是波腹,取决于介质的性质 -
介质分类
波疏介质,波密介质 -
相位跃变(半波损失)
当波从波疏介质垂直入射到波密介质被反射到波疏介质时形成波节。入射波与反射波在此处的相位时时相反,即反射波在分界处产生元 的相位跃变,相当于出现了半个波长的波程差,称半波损失. -
波密介质 - 波疏介质
当波从波密介质垂直入射到波疏介质,被反射到波密介质时形成波腹入射波与反射波在此处的相位时时相同,即反射波在分界处不产生相位跃
多普勒效应
① 波源不动,观察者相对介质以 v 0 v_0 v0运动
观察者接收的频率:
观察者向波源运动: v ′ = u + v 0 u v v^{\prime}=\frac{u+v_{0}}{u} v v′=uu+v0v
观察者远离波源运动: v ′ = u − v 0 u v v^{\prime}=\frac{u-v_{0}}{u} v v′=uu−v0v
② 观察者不动,波源相对介质以 v s v_s vs运动
观察者接收的频率:
波源向观察者运动: v ′ = u u − v s v v^{\prime}=\frac{u}{u-v_s} v v′=u−vsuv
波源远离观察者运动: v ′ = u u + v s v v^{\prime}=\frac{u}{u+v_s} v v′=u+vsuv
LC振荡电路
T
=
2
π
L
C
T=2 \pi \sqrt{L C}
T=2πLC
波动光学
- 可见光是电磁波:400nm~760nm
光的相关性
1. 两列光波相遇时发生干涉的必要条件
振动方向相同+频率相同+相位差恒定
2.由普通光源获得相关光的方法
分波面法和分振幅法
光程
光在介质中走过的路程与这种介质的乘积。
热学概论
P
V
T
=
P
0
V
0
T
0
=
P
0
m
′
M
′
v
0
T
0
=
P
0
v
0
T
0
⋅
m
′
M
=
R
m
′
M
\frac{P V}{T}=\frac{P_{0} V_{0}}{T_{0}}=\frac{P_{0} \frac{m^{\prime}}{M^{\prime}} v_{0}}{T_{0}}=\frac{P_{0} v_{0}}{T_{0}} \cdot \frac{m^{\prime}}{M}=R\frac{m^{\prime}}{M}
TPV=T0P0V0=T0P0M′m′v0=T0P0v0⋅Mm′=RMm′
普适恒量:
R
=
P
0
V
0
T
0
=
8.31
J
/
m
o
l
⋅
K
R=\frac{P_{0} V_{0}}{T_{0}}=8.31 \mathrm{~J} \text { / } \mathrm{mol} \cdot \mathrm{K}
R=T0P0V0=8.31 J / mol⋅K
P V = m ′ M R T = n R T = N N A R T PV= \frac{m^{\prime}}{M}RT=nRT=\frac{N}{N_A}RT PV=Mm′RT=nRT=NANRT
P
=
N
V
⋅
R
N
A
T
P=\frac{N}{V} \cdot \frac{R}{N_{A}} T
P=VN⋅NART
P
=
n
k
T
P=n k T
P=nkT
理想气体压强和温度公式
理想气体的统计假设
在平衡态下,气体分子运动各向同性,即分子向各个方向运动几率相等。
v ˉ x = v ˉ y = v ˉ z = 0 \bar{v}_{x}=\bar{v}_{y}=\bar{v}_{z}=0 vˉx=vˉy=vˉz=0
理想气体的温度公式
p = 2 3 n ω ˉ p = n k T } ω ˉ = 3 2 k T \left.\begin{array}{l} p=\frac{2}{3} n \bar{\omega} \\ p=n k T \end{array}\right\} \bar{\omega}=\frac{3}{2} k T p=32nωˉp=nkT}ωˉ=23kT
理想气体内能
自由度
确定一个物体的空间位置所需要的独立坐标
的数目
物体的自由度
自由运动的质点:自由度为3(3个平动+0个转动)
自由杆状物体:自由度为5(3个平动+2个转动)
自由运动的刚体:自由度为6(3个平动+3个转动)
刚性分子自由度
单原子分子:自由度为3(3个平动+0个转动)
双原子分子:自由度为5(3个平动+2个转动)
多原子分子:自由度为6(3个平动+3个转动)
理想气体内能
E = m ′ M i 2 R T = i 2 P V E=\frac{m^{\prime}}{M} \frac{i}{2} R T=\frac{i}{2} P V E=Mm′2iRT=2iPV
内能改变:
Δ E = m ′ M i 2 R Δ T = i 2 ( p 2 V 2 − p 1 V 1 ) \Delta E=\frac{m^{\prime}}{M} \frac{i}{2} R \Delta T=\frac{i}{2}\left(p_{2} V_{2}-p_{1} V_{1}\right) ΔE=Mm′2iRΔT=2i(p2V2−p1V1)
- i i i 为自由度
平均总动能
一个分子: i 2 k t \frac{i}{2} kt 2ikt
1mol 分子: N A i 2 k t = i 2 R t N_A\frac{i}{2} kt = \frac{i}{2} Rt NA2ikt=2iRt
统计速率
(1)最概然速率 v p v_p vp
讨论分子分布规律时
d f ( v ) d v ∣ v = v p = 0 \left.\frac{\mathrm{d} f(v)}{\mathrm{d} v}\right|_{v=v_{\mathrm{p}}}=0 dvdf(v) v=vp=0
v p = 2 k T m = 2 R T M ≈ 1.41 R T M v_{\mathrm{p}}=\sqrt{\frac{2 k T}{m}}=\sqrt{\frac{2 R T}{M}} \approx 1.41 \sqrt{\frac{R T}{M}} vp=m2kT=M2RT≈1.41MRT
物理意义:气体在一定温度下分布在最概然速率v,附近单位速率间隔内的相对分子数最多
(2)平均速率
分子碰撞规律
v ˉ = ∫ 0 N v d N N = ∫ 0 ∞ v N f ( v ) d v N = ∫ 0 ∞ v f ( v ) d v = 8 k T π m \begin{aligned} \bar{v} & =\frac{\int_{0}^{N} v \mathrm{~d} N}{N}=\frac{\int_{0}^{\infty} v N f(v) \mathrm{d} v}{N} \\ & =\int_{0}^{\infty} v f(v) \mathrm{d} v \\ & =\sqrt{\frac{8 k T}{\pi m}} \end{aligned} vˉ=N∫0Nv dN=N∫0∞vNf(v)dv=∫0∞vf(v)dv=πm8kT
(3)方均根速率
分子能量
v 2 ‾ = ∫ 0 N v 2 d N N = ∫ 0 ∞ v 2 N f ( v ) d v N = 3 k T m \overline{v^{2}}=\frac{\int_{0}^{N} v^{2} \mathrm{~d} N}{N}=\frac{\int_{0}^{\infty} v^{2} N f(v) \mathrm{d} v}{N}=\frac{3 k T}{m} v2=N∫0Nv2 dN=N∫0∞v2Nf(v)dv=m3kT v 2 ‾ = 3 k T m = 3 R T M ≈ 1.73 R T M \sqrt{\overline{v^{2}}}=\sqrt{\frac{3 k T}{m}}=\sqrt{\frac{3 R T}{M}} \approx 1.73 \sqrt{\frac{R T}{M}} v2=m3kT=M3RT≈1.73MRT
v 0 < v < v 2 v_{0}<v<\sqrt{v^{2}} v0<v<v2
分子平均自由程:
每两次连续碰撞之间,一个分子自由运动的平均路程
分子平均碰撞次数:
单位时间内一个分子和其它分子碰撞的平均次数
单位时间内平均碰撞次数:
Z ˉ = π d 2 u n \bar{Z}=\pi d^{2} u n Zˉ=πd2un
- 考虑其它分子的运动:
u ˉ = 2 v ˉ \bar{u}=\sqrt{2} \bar{v} uˉ=2vˉ
- 分子平均碰撞次数
Z ˉ = 2 π d 2 v ˉ n \bar{Z}=\sqrt{2} \pi d^{2} \bar{v} n Zˉ=2πd2vˉn
- 平均自由程
λ ˉ = v ˉ z ˉ = 1 2 π d 2 n = k T 2 π d 2 p \bar{\lambda}=\frac{\bar{v}}{\bar{z}}=\frac{1}{\sqrt{2} \pi d^{2} n} =\frac{k T}{\sqrt{2} \pi d^{2} p} λˉ=zˉvˉ=2πd2n1=2πd2pkT
热力学第一定律
过程曲线
正 | 负 | |
---|---|---|
Δ E \Delta E ΔE | 增加 | 减少 |
W W W | 系统对外界做功 | 外界对系统做功 |
Q Q Q | 系统吸热 | 系统放热 |
重要公式
Q = Δ E + W Q=\Delta E+W Q=ΔE+W d Q = d E + d W d Q=d E+d W dQ=dE+dW d E = m ′ M i 2 R d T d E=\frac{m^{\prime}}{M} \frac{i}{2} R d T dE=Mm′2iRdT d W = p d V d W=p d V dW=pdV W = ∫ V 1 V 2 ρ d V W=\int_{V_{1}}^{V_{2}} \rho d V W=∫V1V2ρdV
摩尔热能量
定义: 1mol某种物质温度升高 1K 所吸收的热量
C = ( d Q d T ) m o l C=\left(\frac{d Q}{d T}\right)_{\mathrm{mol}} C=(dTdQ)mol
等容摩尔热容量
指 1mol 理想气体在等容过程下温度升高 1K 时所吸收的热量
C V = ( d Q V d T ) m o l C_{V}=\left(\frac{d Q_{V}}{d T}\right)_{\mathrm{mol}} CV=(dTdQV)mol
∵ d V = 0 , d W = 0 ∴ d Q V = d E \because d V=0, \quad d W=0 \quad \therefore d Q_{V}=d E ∵dV=0,dW=0∴dQV=dE
d E = i 2 R d T d E=\frac{i}{2} R d T dE=2iRdT C V = d Q V d T = ( d E d T ) V = i 2 R C_{V}=\frac{d Q_{V}}{d T}=\left(\frac{d E}{d T}\right)_{V}=\frac{i}{2} R CV=dTdQV=(dTdE)V=2iR
等压摩尔热容量
指1mol理想气体在等压过程下,温度升高1K时所吸收的热量
C P = d Q P d T = d E + p d V d T = i 2 R d T + R d T d T = i 2 R + R = C v + R C_{P}=\frac{d Q_{P}}{d T}=\frac{d E+p d V}{d T}=\frac{\frac{i}{2} R d T+R d T}{d T}=\frac{i}{2}R+R=C_v+R CP=dTdQP=dTdE+pdV=dT2iRdT+RdT=2iR+R=Cv+R
比热容比
γ = C p C V = i + 2 i \gamma=\frac{C_{p}}{C_{V}}=\frac{i+2}{i} γ=CVCp=ii+2
对应过程热量的计算
Q = ν C V ( T 2 − T 1 ) ( 等容过程 ) Q=\nu C_{V}\left(T_{2}-T_{1}\right) \quad (等容过程) Q=νCV(T2−T1)(等容过程)
Q = ν C P ( T 2 − T 1 ) Q=\nu C_{P}\left(T_{2}-T_{1}\right) Q=νCP(T2−T1)
等值过程
等容过程
特征:
d
V
=
0
dV=0
dV=0
规律: p 1 p 2 = T 1 T 2 \frac{p_1}{p_2}=\frac{T_1}{T_2} p2p1=T2T1
能量计算
∵
d
V
=
0
∴
d
W
=
p
d
V
=
0
\because d V=0 \quad \therefore d W=p d V=0
∵dV=0∴dW=pdV=0
由热力学第一定律,得:
Q = E 2 − E 1 = ν C V ( T 2 − T 1 ) Q=E_{2}-E_{1}=\nu C_{V}\left(T_{2}-T_{1}\right) Q=E2−E1=νCV(T2−T1)
等压过程
特征: d P = 0 dP=0 dP=0
规律: V 1 V 2 = T 1 T 2 \frac{V_1}{V_2}=\frac{T_1}{T_2} V2V1=T2T1
能量计算:
W = ∫ V 1 V 2 p d V = p ( V 2 − V 1 ) = ν R ( T 2 − T 1 ) \begin{aligned} W & =\int_{V_{1}}^{V_{2}} p d V \\ & =p\left(V_{2}-V_{1}\right) \\ &=\nu R\left(T_{2}-T_{1}\right) \end{aligned} W=∫V1V2pdV=p(V2−V1)=νR(T2−T1) Q = ν C P ( T 2 − T 1 ) = ν i + 2 i R ( T 2 − T 1 ) Q=\nu C_{P}\left(T_{2}-T_{1}\right)=\nu \frac{i+2}{i}R(T_2-T_1) Q=νCP(T2−T1)=νii+2R(T2−T1) Δ E = E 2 − E 1 = ν i 2 R ( T 2 − T 1 ) \Delta E=E_{2}-E_{1}=\nu \frac{i}{2} R\left(T_{2}-T_{1}\right) ΔE=E2−E1=ν2iR(T2−T1)
等温过程
特征:
d
T
=
0
dT=0
dT=0
规律: p V = C pV=C pV=C
能量计算:
∵ Δ T = 0 ∴ Δ E = 0 \because \Delta T = 0 \quad \therefore \Delta E =0 ∵ΔT=0∴ΔE=0
由热力学第一定律得:
Q = W = ∫ V 1 V 2 p d V Q=W=\int_{V_{1}}^{V_{2}} p d V Q=W=∫V1V2pdV
Q = W = ∫ V 1 V 2 p d V = ∫ V 1 V 2 ν R T d V V = v R T ln V 2 V 1 = ν R T ln p 1 p 2 Q=W=\int_{V_{1}}^{V_{2}} p d V=\int_{V_{1}}^{V_{2}} \nu R T \frac{d V}{V}=v R T \ln \frac{V_{2}}{V_{1}}=\nu R T \ln \frac{p_{1}}{p_{2}} Q=W=∫V1V2pdV=∫V1V2νRTVdV=vRTlnV1V2=νRTlnp2p1
绝热过程
Δ Q = 0 \Delta Q = 0 ΔQ=0
Δ E = − W \Delta E = -W ΔE=−W
d E = − d W dE=-dW dE=−dW
p V γ = C p V^{\gamma}=C pVγ=C p V = m ‘ M R T = C T p V=\frac{m^`}{M} R T=C T pV=Mm‘RT=CT T V γ − 1 = C T V^{\gamma-1}=C TVγ−1=C p γ − 1 T − γ = C p^{\gamma-1} T^{-\gamma}=C pγ−1T−γ=C
绝热线比等温线陡
d
W
=
p
d
V
=
C
V
ν
d
V
d W=p d V=\frac{C}{V^{\nu}} d V
dW=pdV=VνCdV
W
=
p
2
V
2
−
p
1
V
1
1
−
γ
W=\frac{p_{2} V_{2}-p_{1} V_{1}}{1-\gamma}
W=1−γp2V2−p1V1
Q
2
=
W
2
+
Δ
E
2
=
W
2
−
W
1
<
0
放热
Q_{2}=W_{2}+\Delta E_{2}=W_{2}-W_{1}<0 \quad 放热
Q2=W2+ΔE2=W2−W1<0放热
Q
3
=
W
3
+
Δ
E
=
W
3
−
W
1
>
0
吸热
Q_{3}=W_{3}+\Delta E=W_{3}-W_{1}>0 \quad 吸热
Q3=W3+ΔE=W3−W1>0吸热
循环过程
物质系统经历一系列的变化过程又回到初始状态,这样的周而复始的变化过程称为循环过程
特点:初态=末态
Δ E = 0 \Delta E = 0 ΔE=0 Q 净 = W 净 Q_净=W_净 Q净=W净
Q
净
=
Q
吸
−
Q
放
=
Q
1
−
Q
2
Q_{\text {净 }}=Q_{\text {吸 }}-Q_{\text {放 }}=Q_{1}-Q_{2}
Q净 =Q吸 −Q放 =Q1−Q2
W
净
=
W
系统对外
−
W
外对系统
W_{\text {净 }}=W_{\text {系统对外 }}-\boldsymbol{W}_{\text {外对系统 }}
W净 =W系统对外 −W外对系统
循环效率
η = W Q 1 = Q 1 − Q 2 Q 1 = 1 − Q 2 Q 1 \eta=\frac{W}{Q_{1}}=\frac{Q_{1}-Q_{2}}{Q_{1}}=1-\frac{Q_{2}}{Q_{1}} η=Q1W=Q1Q1−Q2=1−Q1Q2
制冷系数
e = Q 2 W = Q 2 Q 1 − Q 2 e=\frac{Q_{2}}{W}=\frac{Q_{2}}{Q_{1}-Q_{2}} e=WQ2=Q1−Q2Q2
-
W W W:外界对工质作功
-
Q 2 Q_2 Q2.:从低温热源吸热
卡诺循环
卡诺制热
Q
1
=
v
T
1
ln
V
2
V
1
Q
2
=
v
T
2
ln
V
3
V
4
Q_{1}=\boldsymbol{v} T_{1} \ln \frac{V_{2}}{V_{1}} \quad Q_{2}=\boldsymbol{v} T_{2} \ln \frac{V_{3}}{V_{4}}
Q1=vT1lnV1V2Q2=vT2lnV4V3
T
1
V
2
γ
−
1
=
T
2
V
3
γ
−
1
T
1
V
1
γ
−
1
=
T
2
V
4
γ
−
1
T_{1} V_{2}^{\gamma-1}=T_{2} V_{3}^{\gamma-1} \quad T_{1} V_{1}^{\gamma-1}=T_{2} V_{4}^{\gamma-1}
T1V2γ−1=T2V3γ−1T1V1γ−1=T2V4γ−1
V
2
V
1
=
V
3
V
4
⟹
Q
1
Q
2
=
T
1
T
2
\frac{V_{2}}{V_{1}}=\frac{V_{3}}{V_{4}} \Longrightarrow \frac{Q_{1}}{Q_{2}}=\frac{T_{1}}{T_{2}}
V1V2=V4V3⟹Q2Q1=T2T1
则卡诺循环的热机效率为:
η
c
=
1
−
Q
2
Q
1
=
1
−
T
2
T
1
\text { 则卡诺循环的热机效率为: } \eta_{c}=1-\frac{Q_{2}}{Q_{1}}=1-\frac{T_{2}}{T_{1}}
则卡诺循环的热机效率为: ηc=1−Q1Q2=1−T1T2
卡诺制冷
e
c
=
Q
2
W
=
Q
2
Q
1
−
Q
2
=
T
2
T
1
−
T
2
e_{c}=\frac{Q_{2}}{W}=\frac{Q_{2}}{Q_{1}-Q_{2}}=\frac{T_{2}}{T_{1}-T_{2}}
ec=WQ2=Q1−Q2Q2=T1−T2T2