概率论笔记

概率论笔记

1. 概率论的基本概念

1.1 随机试验和随机事件

引言

确定性(必然):一定发生(不发生)

随机(偶然):可能发生,可能不发生

随机试验:

  • 在相同条件下可以重复
  • 结果不止一个
  • 无法预测哪个结果会出现

随机事件: A、B、C

基本事件:不能再分(不必再分)——相对于实验目的

复合事件: 由基本事件复合

必然事件: 一定发生 Ω \quad \Omega Ω

不可能事件 : 一定不发生 ϕ \quad \phi ϕ

样本空间: 所有基本事件的集合 Ω \quad \Omega Ω

样本点 : 样本空间的元素 ω \quad\omega ω


运算律:

1)交换律   A ∪ B = B ∪ A A ∩ B = B ∩ A A \cup B=B \cup A \quad A \cap B=B \cap A AB=BAAB=BA

2)结合律  ( A ∪ B ) ∪ C = A ∪ ( B ∪ C ) (A \cup B) \cup C=A \cup(B \cup C) (AB)C=A(BC) ( A ∩ B ) ∩ C = A ∩ ( B ∩ C ) (A \cap B) \cap C=A \cap(B \cap C) (AB)C=A(BC)

3)分配律   ( A ∪ B ) ∩ C = ( A ∩ C ) ∪ ( B ∩ C ) (A \cup B) \cap C=(A \cap C) \cup(B \cap C) (AB)C=(AC)(BC) ( A ∩ B ) ∪ C = ( A ∪ C ) ∩ ( B ∪ C ) (A \cap B) \cup C=(A \cup C) \cap(B \cup C) (AB)C=(AC)(BC)

4)对偶  A ∪ B ‾ = A ˉ ∩ B ˉ \overline{A \cup B}=\bar{A} \cap \bar{B} AB=AˉBˉ A ∩ B ‾ = A ˉ ∪ B ˉ \overline{A \cap B}=\bar{A} \cup \bar{B} AB=AˉBˉ


1.2 古典概率模型

条件:

1)有限个样本点
2)等可能性

P ( A ) = A 的有利样本点 Ω 中样本点总数 = A 中包含的基本事件 基本事件总数 P(A)=\frac{A的有利样本点}{\Omega 中样本点总数}=\frac{A中包含的基本事件}{基本事件总数} P(A)=Ω中样本点总数A的有利样本点=基本事件总数A中包含的基本事件

1)不重复排列

p n m = n ( n − 1 ) ( n − 2 ) ⋯ ( n − m + 1 ) = n ! ( n − m ) ! p_{n}^{m}=n(n-1)(n-2) \cdots(n-m+1)=\frac{n !}{(n-m) !} pnm=n(n1)(n2)(nm+1)=(nm)!n!

2)全排列

p n n = n ( n − 1 ) × 3 × 3 × 1 = n ! p_{n}^{n}=n(n-1) \times 3 \times 3 \times 1=n ! pnn=n(n1)×3×3×1=n!

3)组合

C n m = P n m m ! = n ( n − 1 ) ⋯ ( n − m + 1 ) m ( m − 1 ) × 2 × 1 = n ! m ! ( n − m ) ! C_{n}^{m}=\frac{P_{n}^{m}}{m !}=\frac{n(n-1) \cdots(n-m+1)}{m(m-1) \times 2 \times 1}=\frac{n !}{m !(n-m) !} Cnm=m!Pnm=m(m1)×2×1n(n1)(nm+1)=m!(nm)!n!


公理化

性质一:

P ( ϕ ) = 0 P(\phi)=0 P(ϕ)=0

性质二:
P ( A 1 + A 2 + … … A n ) = P ( A 1 ) + P ( A 2 ) + … … P ( A n ) P(A_1+A_2+……A_n)=P(A_1)+P(A_2)+……P(A_n) P(A1+A2+……An)=P(A1)+P(A2)+……P(An)

性质三:

P ( A ˉ ) = 1 − P ( A ) P ( A ) + P ( A ‾ ) = 1 P(\bar{A})=1-P(A) \quad P(A)+P(\overline{A})=1 P(Aˉ)=1P(A)P(A)+P(A)=1

性质四:

P ( A − B ) = P ( A ) − P ( A B ) P(A-B)=P(A)-P(A B) P(AB)=P(A)P(AB)
A ⊃ B . P ( A − B ) = P ( A ) − P ( B ) ⋅ 且 P ( A ) ⩾ P ( B ) A \supset B .\quad P(A-B)=P(A)-P(B) \cdot \quad且 P(A) \geqslant P(B) AB.P(AB)=P(A)P(B)P(A)P(B)

性质五:
P ( A + B ) = P ( A ) + P ( B ) − P ( A B ) P(A+B)=P(A)+P(B)-P(A B) P(A+B)=P(A)+P(B)P(AB)

P ( A + B + C ) = P ( A ) + P ( B ) + P ( C ) − P ( A B ) − P ( A C ) − P ( B C ) + P ( A B C ) P(A+B+C) =P(A)+P(B)+P(C)-P(A B)-P(A C) -P(B C)+P(A B C) P(A+B+C)=P(A)+P(B)+P(C)P(AB)P(AC)P(BC)+P(ABC)


1.3 条件概率

条件概率

定义: Ω \Omega Ω 样本空间 A . B A.B A.B 两个事件

P ( B ) > 0 P(B)>0 P(B)>0 B B B 已经发生的条件下 A A A 发生的概率 P ( A ∣ B ) P(A | B) P(AB)

 (1)  P ( A ∣ B ) = n A B n B \text { (1) } P(A \mid B)=\frac{n_{A B}}{n_{B}}  (1) P(AB)=nBnAB  (2)  P ( A ∣ B ) = n A B / n n B / n = P ( A B ) P ( B ) \text { (2) } P(A \mid B)=\frac{n_{A B} / n}{n_{B} / n}=\frac{P(A B)}{P(B)}  (2) P(AB)=nB/nnAB/n=P(B)P(AB)

乘法公式

P ( A ) > 0 P ( B ) > 0 P(A)>0 \quad P(B)>0 P(A)>0P(B)>0

P ( A ∣ B ) = P ( A B ) P ( B )  (1)  P ( A B ) = P ( B ) P ( A ∣ B ) P(A \mid B)=\frac{P(A B)}{P(B)} \quad \text { (1) } P(A B)=P(B) P(A \mid B) P(AB)=P(B)P(AB) (1) P(AB)=P(B)P(AB) P ( B ∣ A ) = P ( A B ) P ( A )  (2)  P ( A B ) = P ( A ) P ( B ∣ A ) P(B \mid A)=\frac{P(A B)}{P(A)} \quad \text { (2) } P(A B)=P(A) P(B \mid A) P(BA)=P(A)P(AB) (2) P(AB)=P(A)P(BA)

P ( A 1 A 2 ⋯ A n ) = P ( A 1 ) P ( A 2 ∣ A 1 ) P ( A 3 ∣ A 1 A 2 ) ⋯ P ( A n ∣ A 1 ⋯ A n − 1 ) P\left(A_{1} A_{2} \cdots A_{n}\right)=P\left(A_{1}\right) P\left(A_{2} \mid A_{1}\right) P\left(A_{3}| A_{1} A_{2}\right) \cdots P\left(A_{n} \mid A_{1} \cdots A_{n-1}\right) P(A1A2An)=P(A1)P(A2A1)P(A3A1A2)P(AnA1An1)
P ( A B C ) = P ( A ) P ( B ∣ A ) P ( C ∣ A B ) P(A B C)=P(A) P(B \mid A) P(C \mid A B) P(ABC)=P(A)P(BA)P(CAB)

全概率事件

A 1 A 2 … … A n A_1A_2……A_n A1A2……An E E E 的完备事件

P ( A i ) > 0 P ( B ) = ∑ i = 1 n P ( A i ) P ( B ∣ A i ) P\left(A_{i}\right)>0 \quad P(B)=\sum_{i=1}^{n} P\left(A_{i}\right) P\left(B \mid A_{i}\right) P(Ai)>0P(B)=i=1nP(Ai)P(BAi)

在这里插入图片描述
贝叶斯公式

P ( A k ∣ B ) = P ( A k ) P ( B ∣ A k ) ∑ i = 1 n P ( A i ) P ( B ∣ A i ) = P ( A k B ) P ( B ) P\left(A_{k} \mid B\right)=\frac{P\left(A_{k}\right) P\left(B \mid A_{k}\right)}{\sum_{i=1}^{n} P\left(A_{i}\right) P\left(B \mid A_{i}\right)}=\frac{P\left(A_{k} B\right)}{P(B)} P(AkB)=i=1nP(Ai)P(BAi)P(Ak)P(BAk)=P(B)P(AkB)

1.4 事件的独立性

定义: A的概率不受B发生与否影响

P ( A ∣ B ) = P ( A ) P\left(A\mid B\right)=P\left(A\right) P(AB)=P(A)

定理: P ( A ) > 0 P ( B ) > 0 P(A)>0 \quad P(B)>0 P(A)>0P(B)>0

A、B 独立 <=> P ( A B ) = P ( A ) P ( B ) P(AB)=P(A)P(B) P(AB)=P(A)P(B)

  • Φ Ω \Phi \quad \Omega ΦΩ 与任意事件A独立

  • A、B互不相容, P ( A B ) = 0 P(AB)=0 P(AB)=0 P ( A + B ) = P ( A ) + P ( B ) − P ( A B ) = P ( A ) + P ( B ) \quad P(A+B)=P(A)+P(B)-P(AB)=P(A)+P(B) P(A+B)=P(A)+P(B)P(AB)=P(A)+P(B)

  • A、B独立, P ( A + B ) = P ( A ) + P ( B ) − P ( A B ) = P ( A ) + P ( B ) − P ( A ) P ( B ) P(A+B)=P(A)+P(B)-P(AB)=P(A)+P(B)-P(A)P(B) P(A+B)=P(A)+P(B)P(AB)=P(A)+P(B)P(A)P(B)

伯努利模型

p n ( k ) = C n k p k ( 1 − p ) n − k = C n k p k q n − k q = 1 − p p_{n}(k)=C_{n}^{k} p^{k}(1-p)^{n-k}=C_{n}^{k} p^{k} q^{n-k} \quad q=1-p pn(k)=Cnkpk(1p)nk=Cnkpkqnkq=1p


2. 随机变量及其分布

离散型: 有限个、无限个可列

非离散型: 连续型

 (1)  p k ⩾ 0 ( 2 ) ∑ p k = 1 \text { (1) } p_{k} \geqslant 0 \text \quad\quad{ (2) } \sum p_{k}=1  (1) pk0(2)pk=1

2.1 概率密度函数

定义: 非负可积 f ( x ) . f ( x ) > = 0 a < = b ∫ − ∞ + ∞ f ( x ) = 1 f(x). f(x)>= 0 \quad a <= b \quad \int_{-\infty}^{+\infty} f(x)=1 f(x).f(x)>=0a<=b+f(x)=1
P { a < x ⩽ b } = ∫ a b f ( x ) d x P\{a<x \leqslant b\}=\int_{a}^{b} f(x) d x P{a<xb}=abf(x)dx

连续变量取个别值的概率是0

x x x: 连续, f ( x ) f(x) f(x):概率密度分布函数

在这里插入图片描述
lim ⁡ Δ x → 0 p { x < x < x + Δ x } Δ x = l i m Δ x → 0 ∫ x x + Δ x f ( x ) d x Δ x = f ( x ) \lim _{\Delta x \rightarrow 0} \frac{p\{x<x<x+\Delta x\}}{\Delta x}=lim_{\Delta x \rightarrow 0} \frac{\int_{x}^{x+\Delta x} f(x) d x}{\Delta x}=f(x) Δx0limΔxp{x<x<x+Δx}=limΔx0Δxxx+Δxf(x)dx=f(x)

2.2 分布函数

F ( x ) = P ( X ≤ x ) F(x)=P(X \leq x) F(x)=P(Xx)
x ∈ ( − ∞ , + ∞ ) F ( x ) ∈ [ 0 , 1 ] x \in(-\infty,+\infty) \quad F(x) \in[0,1] x(,+)F(x)[0,1]

  • 0 ⩽ F ( x ) ≤ 1. x ∈ ( − ∞ , + ∞ ) 0 \leqslant F(x) \leq 1 . \quad x \in(-\infty,+\infty) 0F(x)1.x(,+)
  • F ( x ) 不减 x 1 < x 2 . F ( x 1 ) ⩽ F ( x 2 ) F(x) 不减 \quad x_{1}<x_{2} . \quad F\left(x_{1}\right) \leqslant F\left(x_{2}\right) F(x)不减x1<x2.F(x1)F(x2)
  • lim ⁡ x → + ∞ F ( x ) = F ( + ∞ ) = 1 \lim _{x \rightarrow+\infty} F(x)=F(+\infty)=1 limx+F(x)=F(+)=1
  • lim ⁡ x → − ∞ F ( x ) = F ( − ∞ ) = 0 \lim _{x \rightarrow-\infty} F(x)=F(-\infty)=0 limxF(x)=F()=0

F ( X ) F(X) F(X)右连续

  • 离散型——右连续
  • 连续型——连续

公式:

  • P { x ⩽ a } = F ( a ) P\{x \leqslant a\}=F(a) P{xa}=F(a)
  • P { x > a } = 1 − P { x ⩽ a } = 1 − F ( a ) P\{x>a\}=1-P\{x \leqslant a\}=1-F(a) P{x>a}=1P{xa}=1F(a)
  • P { a < x ⩽ b } = P { x ⩽ b } − P { x ⩽ a } P\{a<x \leqslant b\}=P\{x \leqslant b\}-P\{x \leqslant a\} P{a<xb}=P{xb}P{xa}

右连续: lim ⁡ x → a + F ( x ) = F ( a ) \lim _{x \rightarrow a^{+}} F(x)=F(a) limxa+F(x)=F(a)

左连续: lim ⁡ x → a − F ( x ) = F ( a ) \lim _{x \rightarrow a^{-}} F(x)=F(a) limxaF(x)=F(a)

连续: lim ⁡ x → a F ( x ) = F ( a ) \lim _{x \rightarrow a} F(x)=F(a) limxaF(x)=F(a)

连续型的分布函数:

F ( x ) = P { X ⩽ x } = ∫ − ∞ x f ( t ) d t F(x)=P\{X \leqslant x\}=\int_{-\infty}^{x} f(t) d t F(x)=P{Xx}=xf(t)dt

连续: F ′ ( x ) = f ( x ) F^{\prime}(x)=f(x) F(x)=f(x)


2.3 常见随机变量的分布
2.3.1 离散型分布

0-1分布

在这里插入图片描述

p { x = k } = p k ( 1 − p ) 1 − k k = 0 , p\{x=k\}=p^{k}(1-p)^{1-k} \quad k=0, p{x=k}=pk(1p)1kk=0,

有两种结果,试验只做一次


几何分布

P ( A ) = p P(A)=p P(A)=p

k k k 次首次发生,前 k − 1 k-1 k1次未发生

p { x = k } = ( 1 − p ) k − 1 p p\{x=k\}=(1-p)^{k-1} p p{x=k}=(1p)k1p


二项分布

P ( A ) = p P(A)=p P(A)=p

n n n次实验,发生了 k k k

P { x = k } = C n k p k ( 1 − p ) n − k k = 0 , 1 , 2 , ⋯   , n P\{x=k\}=C_{n}^{k} p^{k}(1-p)^{n-k} \quad k=0,1,2, \cdots, n P{x=k}=Cnkpk(1p)nkk=0,1,2,,n X ∼ B ( n , p ) X \sim B(n, p) XB(n,p)

最可能值:

  • ( n + 1 ) p (n+1)p (n+1)p不为整数   ( n + 1 ) p (n+1)p (n+1)p 达到最大值
  • ( n + 1 ) p (n+1)p (n+1)p为整数   ( n + 1 ) p (n+1)p (n+1)p ( n + 1 ) p − 1 (n+1)p-1 (n+1)p1 达到最大值

泊松分布

P { x = k } = λ k k ! e − λ k = 0 , 1 , 2 , 3 , . P\{x=k\}=\frac{\lambda^{k}}{k !} e^{-\lambda} \quad k=0,1,2 , 3, . P{x=k}=k!λkeλk=0,1,2,3,. λ > 0. x ∼ p ( λ ) \lambda>0 . \quad x \sim p(\lambda) λ>0.xp(λ)

λ 背上背了一个 k , λ 摔了一跤, e 了一声,变成了 − λ , k 表示很震惊 \lambda背上背了一个k, \lambda摔了一跤,e了一声,变成了-\lambda,k表示很震惊 λ背上背了一个k,λ摔了一跤,e了一声,变成了λk表示很震惊

什么时候适合用泊松分布??(用泊松分布近似计算二项分布)

  • n n n 比较大, p p p 比较小, n p np np 适中

  • n > = 100 n>=100 n>=100 n p < = 10 np<=10 np<=10

  • 此时将 n p np np 看作为 λ \lambda λ


超几何分布

N N N个元素, N 1 N_1 N1属于第一类, N 2 N_2 N2属于第二类

n n n个, x x x: n n n个中属于第一类的个数

P { x = k } = C N 1 k C N 2 n − k C N n P\{x=k\}=\frac{C_{N_{1}}^{k} C_{N_{2}}^{n-k}}{C_{N}^{n}} P{x=k}=CNnCN1kCN2nk k = 0 , 1 , 2 , ⋯   , m i n { n , N 1 } k=0,1,2, \cdots, min\left\{n, N_{1}\right\} k=0,1,2,,min{n,N1}

  • 超几何分布可以表示不放回抽样试验
  • N N N很大, n n n很小时,不放回抽样可以近似看作放回抽样,用二项分布计算超几何分布,再用泊松分布近似超几何分布。 p { x = k } = C M k C N − M n − k C N n ≈ C n k p k ( 1 − p ) n − k p\{x=k\}=\frac{C_{M}^{k} C_{N-M}^{n-k}}{C_{N}^{n}} \approx C_{n}^{k} p^{k}(1-p)^{n-k} p{x=k}=CNnCMkCNMnkCnkpk(1p)nk

2.3.2 连续型分布

均匀分布

f ( x ) = { 1 b − a a ≤ x ≤ b 0  else  f(x)=\left\{\begin{array}{cl} \frac{1}{b-a} & a \leq x \leq b \\ 0 & \text { else } \end{array}\right. f(x)={ba10axb else  X ∼ ∪ [ a , b ] X \sim \cup[a, b] X[a,b]

  • 分布函数

F ( x ) = { 0 x < a . x − a b − a a ⩽ x < b F(x)=\left\{\begin{array}{cc} 0 & x<a . \\ \frac{x-a}{b-a} & a \leqslant x<b \end{array}\right. F(x)={0baxax<a.ax<b


指数分布

f ( x ) = { λ e − λ x x > 0 0 x ⩽ 0 f(x)=\left\{\begin{array}{cc} \lambda e^{-\lambda x} & x>0 \\ 0 & x \leqslant 0 \end{array}\right. f(x)={λeλx0x>0x0 λ > 0. x ∼ Exp ⁡ ( λ ) \lambda>0 . \quad x \sim \operatorname{Exp}(\lambda) λ>0.xExp(λ)

在这里插入图片描述

  • 分布函数

F ( x ) = { 1 − e − λ x x > 0 0 x ≤ 0 F(x)=\left\{\begin{array}{cc} 1-e^{-\lambda x} & x>0 \\ 0 & x \leq 0 \end{array}\right. F(x)={1eλx0x>0x0

  • 无记忆性

s > 0 t > 0 s>0 \quad t>0 s>0t>0 p { x > s + t ∣ x > s } = p { x > t } p\{x>s+t \mid x>s\}=p\{x>t\} p{x>s+tx>s}=p{x>t}

在这里插入图片描述

正态分布

ϕ ( x ) = 1 2 π σ e − ( x − μ ) 2 2 σ 2 − ∞ < x < + ∞ \phi(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}-\infty<x<+\infty ϕ(x)=2π σ1e2σ2(xμ)2<x<+ X ∼ N ( μ , σ 2 ) X \sim N\left(\mu, \sigma^{2}\right) XN(μ,σ2)

  • 分布函数

Φ ( x ) = 1 2 π σ ∫ − ∞ x e − ( t − μ ) 2 2 σ 2 d t \Phi(x)=\frac{1}{\sqrt{2 \pi} \sigma} \int_{-\infty}^{x} e^{-\frac{(t-\mu)^{2}}{2 \sigma^{2}}} d t Φ(x)=2π σ1xe2σ2(tμ)2dt

在这里插入图片描述

  • ∫ − ∞ + ∞ e − x 2 d x = π \int_{-\infty}^{+\infty} e^{-x^{2}} d x=\sqrt{\pi} +ex2dx=π

  • 性质一: y = φ ( x ) y=\varphi(x) y=φ(x) x = μ x=\mu x=μ 为对称轴,此时有最大值

  • 性质二: y = φ ( x ) y=\varphi(x) y=φ(x) x x x 轴为渐近线, x = u ± σ x=u \pm \sigma x=u±σ 为拐点

  • 性质三: σ \sigma σ固定, μ \mu μ变化,左右移动; μ \mu μ固定, σ \sigma σ变小,最高点上移, σ \sigma σ变大, σ \sigma σ 下移

标准正态分布:

μ = 0 \mu=0 μ=0, σ = 1 \sigma=1 σ=1

ϕ 0 ( x ) = 1 2 π e − x 2 2 − ∞ < x < + ∞ \phi_{0}(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}}-\infty<x<+\infty ϕ0(x)=2π 1e2x2<x<+

在这里插入图片描述
Φ 0 ( x ) = Φ 0 ( − x ) Φ 0 ( − x ) = 1 − Φ 0 ( x ) \Phi_{0}(x)=\Phi_{0}(-x)\quad {\Phi}_{0}(-x)=1-\Phi_{0}(x) Φ0(x)=Φ0(x)Φ0(x)=1Φ0(x)

  • 一般正态分布化为标准正态分布

ϕ ( x ) = 1 σ ϕ 0 ( x − μ σ ) \phi(x)=\frac{1}{\sigma} \phi_{0}\left(\frac{x-\mu}{\sigma}\right) ϕ(x)=σ1ϕ0(σxμ) Φ ( x ) = Φ 0 ( x − μ σ ) \Phi(x)=\Phi_{0}\left(\frac{x-\mu}{\sigma}\right) Φ(x)=Φ0(σxμ)

  • 上分位点

X ∼ N ( 0 , 1 ) X \sim N\left(0, 1\right) XN(0,1), 给定 α ( 0 < α < 1 ) \alpha(0<\alpha<1) α(0<α<1),找出 μ α \mu_{\alpha} μα, 使 P { x > μ α } = α P\{x>\mu_{\alpha}\}=\alpha P{x>μα}=α


2.4 随机变量函数的分布

1) X X X的密度函数 f X ( x ) f_{X}(x) fX(x) Y = k x + b ( k ≠ 0 ) Y=kx+b(k\neq0) Y=kx+b(k=0)

k > 0 k>0 k>0 时:
F Y ( x ) = P { Y ⩽ x } = P { k X + b ≤ x } = P { X ⩽ x − b k } . F_{Y}(x)=P\{Y \leqslant x\}=P\{k X+b \leq x\}=P\left\{X \leqslant \frac{x-b}{k}\right\} . FY(x)=P{Yx}=P{kX+bx}=P{Xkxb}.

k < 0 k<0 k<0 时:
F Y ( x ) = P { Y ⩽ x } = P { k X + b ≤ x } = P { X ⩾ x − b k } = 1 − P { X ⩽ x − b k } . F_{Y}(x)=P\{Y \leqslant x\}=P\{k X+b \leq x\}=P\left\{X \geqslant \frac{x-b}{k}\right\}=1-P\left\{X \leqslant \frac{x-b}{k}\right\} . FY(x)=P{Yx}=P{kX+bx}=P{Xkxb}=1P{Xkxb}.

两边求导得:

f Y ( x ) = 1 ∣ k ∣ f X ( x − b k ) f_{Y}(x)=\frac{1}{|k|} f_{X}\left(\frac{x-b}{k}\right) fY(x)=k1fX(kxb)

2) X ∼ N ( u , σ 2 ) Y = a X + b Y ∼ N ( a u + b , a 2 σ 2 ) X \sim N\left(u, \sigma^{2}\right) \quad Y=a X+b\quad Y \sim N\left(au+b, a^2\sigma^{2}\right) XN(u,σ2)Y=aX+bYN(au+b,a2σ2)


3. 二维随机变量

3.1 二维随机变量及其分布函数

分布函数: F ( x , y ) = P { X ⩽ x , Y ⩽ y } F(x , y)=P\{X \leqslant x , Y \leqslant y\} F(x,y)=P{Xx,Yy} 联合分布

  • x 1 < x 2 y 1 < y 2 x_{1}<x_{2} \quad y_{1}<y_{2} x1<x2y1<y2时:
    P { x 1 < x ⩽ x 2 . y 1 < Y ⩽ y 2 } = F ( x 2 , y 2 ) − F ( x 2 , y 1 ) − F ( x 1 , y 2 ) + F ( x 1 , y 1 ) \begin{array}{l} \\ P\left\{x_{1}<x \leqslant x_{2} . y_{1}<Y \leqslant y_{2}\right\} \\\\ =F\left(x_{2}, y_{2}\right)-F\left(x_{2}, y_{1}\right)-F\left(x_{1}, y_{2}\right)+F\left(x_{1}, y_{1}\right) \end{array} P{x1<xx2.y1<Yy2}=F(x2,y2)F(x2,y1)F(x1,y2)+F(x1,y1)
  • 边缘分布

F X ( x ) = P { X ≤ x } = F ( x , + ∞ ) = P { X ≤ x . Y < + ∞ } F Y ( y ) = P { Y ≤ y } = F ( + ∞ , y ) = P { X < + ∞ , Y ≤ y } \begin{array}{l} F_{X}(x)=P\{X \leq x\}=F(x,+\infty)=P\{X \leq x . Y<+\infty\} \\ \\F_{Y}(y)=P\{Y \leq y\}=F(+\infty, y)=P\{X<+\infty, Y \leq y\} \end{array} FX(x)=P{Xx}=F(x,+)=P{Xx.Y<+}FY(y)=P{Yy}=F(+,y)=P{X<+,Yy}


3.1 二维离散型的联合分布及其边缘分布

X、Y 取离散值

在这里插入图片描述
F ( x , y ) = P { X ≤ x , Y ≤ y } = ∑ ∑ x i ≤ x y i ≤ y P i j F ( − 1 , − 2 ) = { { X ≤ − 1 , Y ≤ − 2 } = 0 F ( 1 , 2 ) = P { X ≤ 1 , Y ≤ 2 } = 1 2 F ( 4 , 5 ) = P { X ≤ 4 , Y ≤ 5 } = 1 \begin{array}{l} F(x, y)=P\{X \leq x, Y \leq y\}=\sum \sum_{x_{i} \leq x \quad y_i \leq y} P_{i j} \\\\ F(-1,-2)=\{\{X \leq-1, Y \leq-2\}=0 \\\\ F(1,2)=P\{X \leq 1, Y \leq 2\}=\frac{1}{2} \\\\ F(4,5)=P\{X \leq 4, Y \leq 5\}=1 \end{array} F(x,y)=P{Xx,Yy}=xixyiyPijF(1,2)={{X1,Y2}=0F(1,2)=P{X1,Y2}=21F(4,5)=P{X4,Y5}=1

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

叫我胡萝北

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值