目录
3. 蓝桥杯真题:斐波那契数列最大公约数(2020 年省赛)
1.等差数列 (2019年省赛)
题目描述
数学老师给小明出了一道等差数列求和的题目。但是粗心的小明忘记了一 部分的数列,只记得其中 N 个整数。
现在给出这 N 个整数,小明想知道包含这 N 个整数的最短的等差数列有几项?
输入描述
输入的第一行包含一个整数 N。
第二行包含 N 个整数 A1,A2,⋅⋅⋅,AN。(注意 A1 ∼ AN 并不一定是按等差数列中的顺序给出)
其中,2≤N≤10^5,0≤Ai≤10^9。
输出描述
输出一个整数表示答案。
输入输出样例
示例
输入
5 2 6 4 10 20
输出
10
样例说明: 包含 2、6、4、10、20 的最短的等差数列是 2、4、6、8、10、12、14、16、 18、20。
n=int(input())
a=list(map(int,input().split()))
a.sort()
p=[]
for i in range(1,len(a)):
p.append(a[i]-a[i-1])
b=min(p)
if b==0:
print(len(a))
else:
print((a[-1]-a[0])//b+1)
2.蓝桥杯真题:等差数列(2013 年省赛)
题目描述
小张是软件项目经理,他带领 3 个开发组。工期紧,今天都在加班呢。为鼓舞士气,小张打算给每个组发一袋核桃(据传言能补脑)。他的要求是:
各组的核桃数量必须相同
各组内必须能平分核桃(当然是不能打碎的)
尽量提供满足 1,2 条件的最小数量(节约闹革命嘛)
输入描述
输入一行 a,b,c,都是正整数,表示每个组正在加班的人数,用空格分开(a,b,c<30)。
输出描述
输出一个正整数,表示每袋核桃的数量。
输入输出样例
示例
输入
2 4 5
输出
20
from math import *
def lcm(a,b):
return a*b//gcd(a,b)
a,b,c=map(int,input().split())
p=lcm(a,b)
d=lcm(p,c)
print(d)
3. 蓝桥杯真题:斐波那契数列最大公约数(2020 年省赛)
有最小公倍数的求法
题目描述
斐波那契数列满足 F1 = F2 = 1,从 F3开始有 Fn = Fn−1 +Fn−2。
请你计算 GCD(F2020,F520)GCD(F2020,F520),其中 GCD(A,B)表示 A 和 B 的最大公约数。
from math import