GCD,LCM(最大公因数,最小公倍数)

这篇博客汇总了蓝桥杯历年省赛中的数论相关题目,包括等差数列求和、等差数列分发核桃、斐波那契数列最大公约数、寻找最大最小公倍数以及解决最大体积问题。通过实例解析,帮助参赛者理解和掌握相关算法。
摘要由CSDN通过智能技术生成

目录

1.等差数列 (2019年省赛)

2.蓝桥杯真题:等差数列(2013 年省赛) 

3. 蓝桥杯真题:斐波那契数列最大公约数(2020 年省赛)

 4.最大最小公倍数

5.最大体积(与包子凑数类似)

 6.最大比例(2016年省赛)

7.Hankson 的趣味题  


 

1.等差数列 (2019年省赛)

题目描述

数学老师给小明出了一道等差数列求和的题目。但是粗心的小明忘记了一 部分的数列,只记得其中 N 个整数。

现在给出这 N 个整数,小明想知道包含这 N 个整数的最短的等差数列有几项?

输入描述

输入的第一行包含一个整数 N。

第二行包含 N 个整数 A1​,A2​,⋅⋅⋅,AN​。(注意 A1​ ∼ AN​ 并不一定是按等差数列中的顺序给出)

其中,2≤N≤10^5,0≤Ai​≤10^9。

输出描述

输出一个整数表示答案。

输入输出样例

示例

输入

5
2 6 4 10 20

输出

10

样例说明: 包含 2、6、4、10、20 的最短的等差数列是 2、4、6、8、10、12、14、16、 18、20。

n=int(input())
a=list(map(int,input().split()))
a.sort()
p=[]
for i in range(1,len(a)):
  p.append(a[i]-a[i-1])
b=min(p)
if b==0:
  print(len(a))
else:
  print((a[-1]-a[0])//b+1)

2.蓝桥杯真题:等差数列(2013 年省赛) 

题目描述

小张是软件项目经理,他带领 3 个开发组。工期紧,今天都在加班呢。为鼓舞士气,小张打算给每个组发一袋核桃(据传言能补脑)。他的要求是:

  1. 各组的核桃数量必须相同

  2. 各组内必须能平分核桃(当然是不能打碎的)

  3. 尽量提供满足 1,2 条件的最小数量(节约闹革命嘛)

输入描述

输入一行 a,b,c,都是正整数,表示每个组正在加班的人数,用空格分开(a,b,c<30)。

输出描述

输出一个正整数,表示每袋核桃的数量。

输入输出样例

示例

输入

2 4 5

输出

20
from math import *
def lcm(a,b):
  return a*b//gcd(a,b)
a,b,c=map(int,input().split())
p=lcm(a,b)
d=lcm(p,c)
print(d)

3. 蓝桥杯真题:斐波那契数列最大公约数(2020 年省赛)

有最小公倍数的求法

 题目描述

斐波那契数列满足 F1 = F2 = 1,从 F3开始有 Fn = Fn−1 +Fn−2。

请你计算 GCD(F2020,F520)GCD(F2020,F520),其中 GCD(A,B)表示 A 和 B 的最大公约数。

from math import
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值