一、树
树的概念及结构:
树是一种非线性的数据结构,它是由n(n>=0)个有限结点组成一个具有层次关系的集合。把它叫做树是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。
有一个特殊的结点,称为根结点,根节点没有前驱结点
除根节点外,其余结点被分成M(M>0)个互不相交的集合T1、T2、……、Tm,其中每一个集合Ti(1<= i <= m)又是一棵结构与树类似的子树。每棵子树的根结点有且只有一个前驱,可以有0个或多个后继
因此,树是递归定义的。
注意:树形结构中,子树之间不能有交集,否则就不是树形结构
树的相关概念:
节点的度:一个节点含有的子树的个数称为该节点的度; 如上图:A的为6
叶节点或终端节点:度为0的节点称为叶节点; 如上图:B、C、H、I...等节点为叶节点
非终端节点或分支节点:度不为0的节点; 如上图:D、E、F、G...等节点为分支节点
双亲节点或父节点:若一个节点含有子节点,则这个节点称为其子节点的父节点; 如上图:A是B的父节点
孩子节点或子节点:一个节点含有的子树的根节点称为该节点的子节点; 如上图:B是A的孩子节点
兄弟节点:具有相同父节点的节点互称为兄弟节点; 如上图:B、C是兄弟节点
树的度:一棵树中,最大的节点的度称为树的度; 如上图:树的度为6
节点的层次:从根开始定义起,根为第1层,根的子节点为第2层,以此类推;
树的高度或深度:树中节点的最大层次; 如上图:树的高度为4
堂兄弟节点:双亲在同一层的节点互为堂兄弟;如上图:H、I互为兄弟节点
节点的祖先:从根到该节点所经分支上的所有节点;如上图:A是所有节点的祖先
子孙:以某节点为根的子树中任一节点都称为该节点的子孙。如上图:所有节点都是A的子孙
森林:由m(m>0)棵互不相交的树的集合称为森林;
树的表示:
树结构相对线性表就比较复杂了,要存储表示起来就比较麻烦了,既然保存值域,也要保存结点和结点之间的关系,实际中树有很多种表示方式如:双亲表示法,孩子表示法、孩子双亲表示法以及孩子兄弟表示法等。我们这里就简单的了解其中最常用的孩子兄弟表示法。
typedef int DataType;
struct Node
{
struct Node* _firstChild1; // 第一个孩子结点
struct Node* _pNextBrother; // 指向其下一个兄弟结点
DataType _data; // 结点中的数据域
};
二、二叉树
二叉树的概念及结构:
一棵二叉树是结点的一个有限集合,该集合:
1. 或者为空
2. 由一个根节点加上两棵别称为左子树和右子树的二叉树组成
从上图可以看出:
1. 二叉树不存在度大于2的结点
2. 二叉树的子树有左右之分,次序不能颠倒,因此二叉树是有序树
注意:对于任意的二叉树都是由以下几种情况复合而成的:
特殊的二叉树:
满二叉树:一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉树。也就是说,如果一个二叉树的层数为K,且结点总数是 ,则它就是满二叉树。
完全二叉树:完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为K的,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从1至n的结点一一对应时称之为完全二叉树。 要注意的是满二叉树是一种特殊的完全二叉树。
二叉树的性质:
若规定根节点的层数为1,则一棵非空二叉树的第i层上最多有2^(i-1) 个结点.
若规定根节点的层数为1,则深度为h的二叉树的最大结点数是2^h-1 .(等比求和)
对任何一棵二叉树, 如果度为0其叶结点个数为n0, 度为2的分支结点个数为n2 ,则有 n0 = n2 + 1
若规定根节点的层数为1,具有n个结点的满二叉树的深度,h= log(n+1). (ps:log(n+1)是log以2为底,n+1为对数)
对于具有n个结点的完全二叉树,如果按照从上至下从左至右的数组顺序对所有节点从0开始编号,则对于序号为i的结点有:
若i>0,i位置节点的双亲序号:(i-1)/2;i=0,i为根节点编号,无双亲节点
若2i+1<n,左孩子序号:2i+1,2i+1>=n否则无左孩子
若2i+2<n,右孩子序号:2i+2,2i+2>=n否则无右孩子
4.二叉树的存储结构:
二叉树一般可以使用两种结构存储,一种顺序结构,一种链式结构。
顺序存储
顺序结构存储就是使用数组来存储,一般使用数组只适合表示完全二叉树,因为不是完全二叉树会有空间的浪费。而现实中使用中只有堆才会使用数组来存储,关于堆我们后面的章节会专门讲解。二叉树顺
序存储在物理上是一个数组,在逻辑上是一颗二叉树。
链式存储
二叉树的链式存储结构是指,用链表来表示一棵二叉树,即用链来指示元素的逻辑关系。 通常的方法是链表中每个结点由三个域组成,数据域和左右指针域,左右指针分别用来给出该结点左孩子和右孩子所在的链结点的存储地址 。链式结构又分为二叉链和三叉链,当前我们学习中一般都是二叉链,后面课程学到高阶数据结构如红黑树等会用到三叉链。
typedef int BTDataType;
// 二叉链
struct BinaryTreeNode
{
struct BinTreeNode* _pLeft; // 指向当前节点左孩子
struct BinTreeNode* _pRight; // 指向当前节点右孩子
BTDataType _data; // 当前节点值域
}
// 三叉链
struct BinaryTreeNode
{
struct BinTreeNode* _pParent; // 指向当前节点的双亲
struct BinTreeNode* _pLeft; // 指向当前节点左孩子
struct BinTreeNode* _pRight; // 指向当前节点右孩子
BTDataType _data; // 当前节点值域
};
三、堆
1.堆的概念及结构:
堆是每个双亲节点都大于(小于)子节点的特殊完全二叉树。将根节点最大的堆叫做最大堆或大根堆,根节点最小的堆叫做最小堆或小根堆。
堆的性质:
堆中某个节点的值总是不大于或不小于其父节点的值;
堆总是一棵完全二叉树。
2.堆的实现
2.1堆的调整算法:
堆的向下(向上)调整算法:
现在我们给出一个数组,逻辑上看做一颗完全二叉树。我们通过从根节点开始的向下调整算法可以把它调整成一个小堆。向下调整算法有一个前提:左右子树必须是一个堆,才能调整。
int array[] = {27,15,19,18,28,34,65,49,25,37};
通过观察我们可以发现,调整堆时,我们需要对比父子结点并使其互换,假设父亲结点为parent,孩子结点为child,那么通过观察上图可以看出,左孩子结点为:child= parent*2 + 1;右孩子结点为:child = parent*2 + 2;当我们需要调整堆时,我们可以通过child++来选择左右孩子中满足条件的,而当我们需要通过孩子找到父亲时,不难看出parent = (child-1)/ 2;无论是左孩子还是右孩子,计算机都会取整数,即孩子的父亲结点。
左:child = parent*2 + 1
右:child = parent*2 + 2
父亲:parent = (child - 1)/ 2
向上调整算法:
void AdjustUp(HPDatatype* a, int child)
{
int parent = (child - 1) / 2;
while (child > 0)
{
if (a[child] < a[parent])
{
Swap(&a[child], &a[parent]);
child = parent;
parent = (child - 1) / 2;
}
else
{
break;
}
}
}
向下调整算法:
void AdjustDown(HPDatatype* a, int n, int parent)
{
int child = 2 * parent + 1;//左孩子
while (child < n)
{
//找更小(大)的孩子
if (child + 1 < n && a[child] > a[child + 1])
{
child++;
}
if (a[parent] > a[child])
{
Swap(&a[parent], &a[child]);
parent = child;
child = 2 * parent + 1;
}
else
{
break;
}
}
}
调整为大堆或者小堆,只需改变孩子对比时的符号即可。
2.2堆的创建:
下面我们给出一个数组,这个数组逻辑上可以看做一颗完全二叉树,但是还不是一个堆,现在我们通过算法,把它构建成一个堆。根节点左右子树不是堆,我们怎么调整呢?这里我们从倒数的第一个非叶子节点的子树开始调整,一直调整到根节点的树,就可以调整成堆。
int a[] = {1,5,3,8,7,6};
通过观察可以看出,该二叉树根节点的左右子树并不是堆,所以无法直接向下调整,那么我们怎末调整建堆呢?这里我们从最后一个结点的父亲结点开始向下调整,依次向前遍历每一个结点,直到遍历到根节点,如下图:
void HeapCreate(HP* php, HPDatatype* a, int n)
{
assert(php);
php->a = (HPDatatype*)malloc(sizeof(HPDatatype) * n);
if (php->a == NULL)
{
perror("malloc fail");
exit(-1);
}
memcpy(php->a, a, sizeof(HPDatatype) * n);
php->size = php->capacity = n;
//建堆算法:
//向下调整建堆
for (int i = (n - 1 - 1) / 2; i >= 0; i--)
{
AdjustDown(php->a, n, i);
}
}
2.3建堆的时间复杂度
并非只有向下建堆这一种方法,向上调整同样可以建堆,就是两者的时间复杂度相差不同。计算两种算法时间复杂度可知:
向下建堆算法时间复杂度:O(N)
向上建堆算法时间复杂度:O(N*logN) (ps:logN是以2为底的)
其实观察二叉树结点的分布特点,每下一层就是上一层的二倍,二叉树结点依次向下增多,最后一层结点几乎占整个二叉树结点的一半,再观察两个算法的特点,向上建堆算法,在结点少处调整的次数少,在结点多处调整的次数多,反而向下建堆算法,最后一层的结点不需要调整,这就大大减小了时间复杂度。
建堆算法:
void HeapCreate(HP* php, HPDatatype* a, int n)
{
assert(php);
php->a = (HPDatatype*)malloc(sizeof(HPDatatype) * n);
if (php->a == NULL)
{
perror("malloc fail");
exit(-1);
}
memcpy(php->a, a, sizeof(HPDatatype) * n);
php->size = php->capacity = n;
//建堆算法:
//向上调整建堆
//for (int i = 1; i < n; i++)
//{
// AdjustUp(php->a, i);
//}
//向下调整建堆
for (int i = (n - 1 - 1) / 2; i >= 0; i--)
{
AdjustDown(php->a, n, i);
}
}
2.4堆的代码实现:
Heap.h
#include<stdio.h>
#include<stdlib.h>
#include<stdbool.h>
#include<assert.h>
#include<string.h>
#include<time.h>
typedef int HPDatatype;
typedef struct Heap
{
HPDatatype* a;
int size;
int capacity;
}HP;
void HeapCreate(HP* php,HPDatatype* a,int n);
void HeapInit(HP* php);
void HeapDestory(HP* php);
void Swap(HPDatatype* p1, HPDatatype* p2);
void AdjustUp(HPDatatype* a, int child);
void HeapPush(HP* php, HPDatatype* x);
void AdjustDown(HPDatatype* a, int n, int parent);
void HeapPop(HP* php);
HPDatatype HeapTop(HP* php);
int HeapSize(HP* php);
bool HeapEmpty(HP* php);
Heap.c
#include"Heap.h"
void HeapCreate(HP* php, HPDatatype* a, int n)
{
assert(php);
php->a = (HPDatatype*)malloc(sizeof(HPDatatype) * n);
if (php->a == NULL)
{
perror("malloc fail");
exit(-1);
}
memcpy(php->a, a, sizeof(HPDatatype) * n);
php->size = php->capacity = n;
//建堆算法:
//向上调整建堆
//for (int i = 1; i < n; i++)
//{
// AdjustUp(php->a, i);
//}
//向下调整建堆
for (int i = (n - 1 - 1) / 2; i >= 0; i--)
{
AdjustDown(php->a, n, i);
}
}
void HeapInit(HP* php)
{
assert(php);
php->a = NULL;
php->size = php->capacity = 0;
}
void HeapDestory(HP* php)
{
assert(php);
free(php->a);
php->a = NULL;
php->size = php->capacity = 0;
}
bool HeapEmpty(HP* php)
{
assert(php);
return php->size == 0;
}
void Swap(HPDatatype* p1, HPDatatype* p2)
{
HPDatatype tmp = *p1;
*p1 = *p2;
*p2 = tmp;
}
void AdjustUp(HPDatatype* a, int child)
{
int parent = (child - 1) / 2;
while (child > 0)
{
if (a[child] < a[parent])
{
Swap(&a[child], &a[parent]);
child = parent;
parent = (child - 1) / 2;
}
else
{
break;
}
}
}
void HeapPush(HP* php, HPDatatype* x)
{
assert(php);
if (php->size == php->capacity)
{
int newcapacity = php->capacity == 0 ? 4 : php->capacity * 2;
HPDatatype* tmp = (HPDatatype*)realloc(php->a, sizeof(HPDatatype) * newcapacity);
if (tmp == NULL)
{
perror("realloc fail");
exit(-1);
}
php->a = tmp;
php->capacity = newcapacity;
}
php->a[php->size++] = x;
//向上调整
AdjustUp(php->a, php->size - 1);
}
void AdjustDown(HPDatatype* a, int n, int parent)
{
int child = 2 * parent + 1;//左孩子
while (child < n)
{
//找更小(大)的孩子
if (child + 1 < n && a[child] > a[child + 1])
{
child++;
}
if (a[parent] > a[child])
{
Swap(&a[parent], &a[child]);
parent = child;
child = 2 * parent + 1;
}
else
{
break;
}
}
}
void HeapPop(HP* php)
{
assert(php);
assert(php->size > 0);
//交换首尾数据便于删除
Swap(&php->a[0], &php->a[php->size - 1]);
php->size--;
//向下调整
AdjustDown(php->a, php->size, 0);
}
HPDatatype HeapTop(HP* php)
{
assert(php);
assert(php->size > 0);
return php->a[0];
}
int HeapSize(HP* php)
{
assert(php);
return php->size;
}
3.堆的应用:
3.1堆排序:
堆排序即利用堆的思想来进行排序,总共分为两个步骤:
建堆:
升序:建大堆
降序:建小堆
利用堆删除思想来进行排序
建堆和堆删除中都用到了向下调整,因此掌握了向下调整,就可以完成堆排序。
比如当需要进行升序排序,我们建一个大堆,对于大堆,堆顶的数据必然是最大的,此时,我们将堆顶数据与最后一位数据交换,然后将整个数据size-1,即是将最大的元素不算在堆内,此时,堆顶的左右子树都是堆,可以采用向下调整,重新建堆,然后往复刚才的步骤,将整个数组中次大的数排到尾部,直到排序完成。可以看出,堆排序是从后向前排序数据的。
堆排序实现:
void HeapSort(int* a, int n)
{
//升序建大堆
//降序建小堆
for (int i = (n - 1 - 1) / 2; i >= 0; i--)
{
AdjustDown(a, n, i);
}
//排序 -- O(N*logN)
int end = n - 1;
while (end > 0)
{
Swap(&a[0], &a[end]);//调换首尾,让最大数据到数据尾
AdjustDown(a, end, 0);//向下调整,重新成堆,此时的end正好是减去最大值的数据个数
end--;//缩减数组,其他数据成堆
}
}
3.2Top-K问题:
TOP-K问题:即求数据结合中前K个最大的元素或者最小的元素,一般情况下数据量都比较大。
比如:专业前10名、世界500强、富豪榜、游戏中前100的活跃玩家等。
对于Top-K问题,能想到的最简单直接的方式就是排序,但是:如果数据量非常大,排序就不太可取了(可能数据都不能一下子全部加载到内存中)。最佳的方式就是用堆来解决,基本思路如下:
用数据集合中前k个元素来建堆
前k个最大的元素,则建小堆
前k个最小的元素,则建大堆
将剩余N-K个元素依次与堆顶元素比完之后,堆中剩余的K个元素就是所求的前K个最小或者最大的元素。
那为什么前k最大元素需要建小堆,而最小的数要建大堆?小堆中堆顶元素即为k个数中最小元素,而大的元素都在堆底,当我们将堆顶元素与剩下的N-K个元素比较时,如果大于堆顶元素,将其与堆顶元素交换,向下调整后,并且又得到一个小堆,若新进入的数据为大值的话会"沉入"堆底,循环往复,便可找到N个数中最大的K个数,前K个最小的数也同理。
代码实现:
//TopK问题
//用数组得前K个数建一个K个数大的小堆
//用剩余的N-K个数分别与堆顶数据比较
//大的数进堆,然后向下调整
//大的数都会在堆底
void TestTopK1()
{
int minHeap[5];
FILE* fout = fopen("Data.txt", "r");
if (fout == NULL)
{
perror("fopen fail");
exit(-1);
}
//取前五个数据
int k = 5;
for (int i = 0; i < k; i++)
{
fscanf(fout, "%d", &minHeap[i]);
}
//建小堆
for (int i = (k - 1 - 1) / 2; i >= 0; i--)
{
AdjustDown(minHeap, k, i);
}
int val = 0;
while (fscanf(fout, "%d", &val) != EOF)
{
if (val > minHeap[0])
{
minHeap[0] = val;
AdjustDown(minHeap, k, 0);
}
}
fclose(fout);
}
用次方法可判断程序是否可行: