Error Classification:错误分类-AUTOSAR_CP_OS

Error Classification:错误分类

在这里插入图片描述

背景与原理

OS 错误处理的独特性

  • AUTOSAR BSW 模块(如 CAN 驱动、ADC 驱动)通常将错误分为 “开发错误”(报告给 Det)和 “生产错误”(报告给 Dem)

  • 但 OS 的错误处理遵循独立机制:

    • OS 不直接向 Det 或 Dem 报告任何错误,而是通过调用ErrorHook(钩子函数)通知用户

    • 若用户需要将 OS 错误同步到 Det/Dem,需在ErrorHook中自行实现报告逻辑

      • 如调用 Det_ReportError 或 Dem_ReportError
  • 原因:

    • OS 作为系统核心调度组件,错误处理需最小化依赖外部模块

    • 避免OS 错误导致 Det/Dem 不可用的循环问题

错误码的范围界定

  • OSEK OS 标准错误码

    • 如E_OS_ID(无效对象 ID)、E_OS_VALUE(参数值无效)等

    • 已在 OSEK/VDX OS 标准(ISO 17356-3)中定义,OS 直接沿用

  • AUTOSAR OS 新增错误码

    • 针对 AUTOSAR 扩展功能(如内存保护、多核、自旋锁)新增的错误码

OS 错误处理流程与 BSW 模块的差异

  • 在这里插入图片描述

  • 在这里插入图片描述

新增错误码的定义

总览

  • E_OS_ILLEGAL_ADDRESS

    • 服务调用时传递的地址参数无效

    • 如 NULL 指针、不在合法内存范围

  • E_OS_PROTECTION_MEMORY

    • 非可信应用访问无权限内存

    • 如写 OS 私有数据、访问未授权外设地址

  • E_OS_STACKFAULT

    • 任务 / Category 2 ISR 的堆栈溢出或访问超出配置范围
  • E_OS_CORE

    • 调用跨核心服务时目标核心未激活,或操作非本核心的资源
  • E_OS_NESTING_DEADLOCK

    • 自旋锁 / 资源嵌套顺序错误

    • 如核心 0 先锁 A 再锁 B,核心 1 先锁 B 再锁 A

  • E_OS_MISSINGEND

    • 任务未调用TerminateTask()或ChainTask()就从入口函数返回
  • E_OS_PROTECTION_LOCKED

    • 任务持有资源 / 禁用中断的时间超过配置的 Lock Budget
  • E_OS_SPINLOCK

    • 持有自旋锁时执行解调度操作

      • 如调用 WaitEvent、TerminateTask、ChainTask
    • 或任务终止时未释放自旋锁,导致冲突

  • E_OS_SERVICEID

    • 调用CallTrustedFunction时指定的可信函数索引无效
  • E_OS_PROTECTION_EXCEPTION

    • 执行非法指令(如除零、未定义指令)或硬件异常
  • E_OS_INTERFERENCE_DEADLOCK

    • 高优先级任务自旋等待低优先级任务持有的自旋锁

    • 低优先级任务被中断抢占

  • E_OS_PROTECTION_TIME

    • 任务 / ISR 的执行时间超过配置的 Execution Budget
  • E_OS_DISABLEDINT

    • 中断禁用(如DisableAllInterrupts后)调用非中断安全的 OS 服务
  • E_OS_PROTECTION_ARRIVAL

    • 任务激活 / ISR 触发时间早于配置的 Time Frame(最小到达间隔)

关键属性

  • 错误值(Error Value)

    • 文档规定 “由实现分配”,即不同 OS 供应商可自行定义具体数值

    • 如将E_OS_ILLEGAL_ADDRESS定义为 0x0A

  • 适用场景

    • 所有新增错误码仅用于 OS 内部错误报告

    • 通过ErrorHook传递给用户,不直接暴露给 BSW 其他模块

  • 与 OSEK 的兼容

    • 所有新增错误码仅用于 OS 内部错误报告,且仅在扩展状态(EXTENDED status)下返回

    • 通过 ErrorHook 传递给用户,不直接暴露给 BSW 其他模块

总结

明确 OS 错误的独特处理机制与新增错误码定义

概括为:

  • 处理机制特殊

    • OS 不向 Det/Dem 报告错误,需自行在ErrorHook中自行实现错误同步

      • 如报告 Det/Dem
    • 避免依赖外部模块导致的连锁故障

  • 错误码分类清晰

    • 新增 14 种错误码,覆盖内存保护、多核、自旋锁、时序保护等 AUTOSAR 扩展场景,补充 OSEK OS 的不足
  • 属性灵活统一

    • 错误值由实现分配,但错误类型与含义全局统一

    • 确保不同 OS 供应商的错误可识别、可追溯

<think>好的,用户现在的问题是关于在缺少7z命令的Linux环境中运行一个Python测试脚本,具体是运行`python test_classification.py --use_normals --log_dir pointnet2_cls_msg`,同时需要安装必要的工具和配置正确的路径。我需要结合用户之前的问题和回答,以及提供的引用内容来给出解决方案。 首先,回顾用户的历史问题,之前他遇到了7z命令未找到的问题,我指导他安装p7zip-full包。现在用户的问题更深入,涉及到运行Python脚本时的依赖和路径问题。因此,我需要确保用户不仅安装7z,还要处理Python环境和项目路径的问题。 根据用户提供的引用[1],训练和测试命令中使用了`--log_dir`参数,这可能意味着脚本需要访问特定目录下的检查点或模型文件。而引用[2]中提到加载检查点`best_model.pth`,所以用户需要确认模型文件的路径是否正确,尤其是在测试时。 首先,解决7z的问题,用户已经知道如何安装,但可能需要再次确认安装是否正确。接下来,检查Python依赖,用户可能需要安装PyTorch等库,特别是带有CUDA支持的版本,因为引用[2]中提到了GPU的使用。此外,项目可能依赖其他库如numpy、h5py等,需要一并安装。 然后,路径配置是关键。用户可能需要确保检查点文件存在于正确的目录下,例如`log/classification/pointnet2_cls_msg/checkpoints/best_model.pth`。如果路径不正确,脚本会报错,所以需要指导用户检查路径结构,并调整`--log_dir`参数或创建必要的目录。 此外,用户可能遇到CUDA内存不足的问题,需要调整batch size。或者数据路径不正确,需要确认数据集的位置。还有可能缺少预训练模型,需要下载或重新训练。 最后,用户可能需要添加错误处理,例如在Python脚本中捕获异常,或者在Shell脚本中设置set -e来及时发现问题。同时,给出验证安装的步骤,确保所有依赖都已正确安装。 总结,解决方案需要分步骤处理:安装7z,安装Python依赖,配置项目路径,处理数据集和模型路径,处理常见错误,并提供验证方法。同时,生成相关问题,帮助用户进一步排查可能出现的问题。</think>--- ### 在Linux中运行Python测试脚本的完整解决方案 --- #### 一、核心问题分析 根据引用[1]中的测试命令 `python test_classification.py --use_normals --log_dir pointnet2_cls_msg`,需解决以下问题: 1. **7z依赖缺失**:模型文件/数据解压需要7z工具 2. **Python环境依赖**:PyTorch、CUDA等框架缺失 3. **路径配置错误**:检查点路径`log_dir`与实际存储位置不匹配 --- #### 二、分步解决方案 ##### 1. 安装7z工具(关键前置条件) ```bash # Debian/Ubuntu系统 sudo apt-get update && sudo apt-get install p7zip-full -y # CentOS/RHEL系统 sudo yum install epel-release && sudo yum install p7zip p7zip-plugins ``` ##### 2. 验证Python环境依赖 根据引用[2]中的训练配置,需确保以下包已安装: ```bash # PyTorch基础包(必须匹配CUDA版本) pip install torch==1.10.0+cu113 torchvision==0.11.1+cu113 -f https://download.pytorch.org/whl/cu113/torch_stable.html # 项目特定依赖 pip install numpy h5py tqdm tensorboardX ``` ##### 3. 路径配置修正 根据引用[1]中的`--log_dir`参数,需确保目录结构如下: ``` ├── test_classification.py └── log/classification/pointnet2_cls_msg/ └── checkpoints/ └── best_model.pth # 检查点文件位置[^2] ``` **手动创建缺失目录**: ```bash mkdir -p log/classification/pointnet2_cls_msg/checkpoints ``` ##### 4. 处理数据路径问题 若出现数据集路径错误,在代码中添加路径声明: ```python # 在test_classification.py开头添加 import os os.environ["DATA_PATH"] = "/your/actual/dataset/path" # 替换为真实路径 ``` ##### 5. 解决CUDA相关问题 根据引用[2]中的GPU设置,若遇到CUDA内存不足: ```bash # 运行脚本时限制显存使用 python test_classification.py --use_normals --log_dir pointnet2_cls_msg --batch_size 8 ``` --- #### 三、完整执行流程 ```bash # Step 1: 安装7z sudo apt-get install p7zip-full -y # Step 2: 激活Python虚拟环境 conda activate pointnet_env # 或使用其他虚拟环境 # Step 3: 检查检查点文件 ls -l log/classification/pointnet2_cls_msg/checkpoints/best_model.pth # Step 4: 运行测试脚本(带错误重试) python test_classification.py --use_normals --log_dir pointnet2_cls_msg || { echo "检测到错误,尝试自动修复..."; pip install --upgrade numpy; export PYTHONPATH=$PYTHONPATH:$(pwd); python test_classification.py --use_normals --log_dir pointnet2_cls_msg } ``` --- #### 四、常见错误处理 | 错误类型 | 解决方案 | |---------|----------| | `ImportError: No module named 'utils'` | 添加项目根目录到PYTHONPATH: `export PYTHONPATH=$PYTHONPATH:$(pwd)` | | `FileNotFoundError: [Errno 2] No such file...` | 检查`--log_dir`对应的物理路径是否包含`best_model.pth` | | `CUDA out of memory` | 减少batch size: `--batch_size 4` | | `undefined symbol: _ZN3c101...` | 重新安装匹配CUDA版本的PyTorch | --- ### 相关问题 1. 如何将Python脚本中的相对路径改为绝对路径? 2. 当训练和测试脚本使用不同的CUDA版本时如何解决兼容性问题? 3. 如何通过Docker容器化部署PointNet++测试环境?
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

木木不迷茫(˵¯͒¯͒˵)

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值