【树的直径】CF863 div3 F

68 篇文章 1 订阅
文章介绍了一个关于无根树的问题,要求在每次将根节点移动到相邻节点需支付一定费用的情况下,找到最大化收益的策略。解决方案包括先通过BFS计算树的直径,然后预处理每个节点的最长链,最后枚举所有节点以O(n)复杂度计算最大收益。
摘要由CSDN通过智能技术生成

又是关于直径的问题

感觉这个思维难度不高啊 ,知道它的性质大概就能想出来做法了

但是我没做出来,感觉树的问题还是做的少了

Problem - F - Codeforces

题意:

给定一个无根树,每次操作可以把根换到相邻的结点,花费为c,边与边之间距离为k,收益为树的最长链-总花费,问最大收益是多少

思路:

去看看有什么特殊性质:

1.操作:把根换成相邻结点 

2.收益和最长链有关

考虑最长链:对于一个结点,能延伸的最长链一定是该结点到直径的某一个端点,因此肯定要把直径求出来

然后去看操作,它说相邻,相邻这个特殊条件很重要,这意味着花费我们可以O(1)计算,只需BFS即可

所以做法就是,先求出树的直径,再去BFS预处理,然后枚举所有结点,对于一个结点的最长链可以O(1)计算,花费也可以O(1)计算,复杂度就是O(n)的

Code:

注:这个直径的写法很帅啊,想把它塞进板子里

#include <bits/stdc++.h>

#define int long long

using namespace std;

const int mxn=2e5+10;
const int mxe=2e5+10;
const int mod=1e9+7;

struct ty{
	int to,next;
}edge[mxe<<2];

int n,k,c,u,v,tot=0;
int head[mxn];

void add(int u,int v){
	edge[tot].to=v;
	edge[tot].next=head[u];
	head[u]=tot++;
} 
void G_init(){
	tot=0;
	for(int i=0;i<=n;i++){
		head[i]=-1;
	}
}
vector<int> bfs(int x){
	vector<int> d(n+1,-1);
	queue<int> q;
	q.push(x);
	d[x]=0;
	while(!q.empty()){
		int u=q.front();
		q.pop();
		for(int i=head[u];~i;i=edge[i].next){
			if(d[edge[i].to]==-1){
				d[edge[i].to]=d[u]+1;
				q.push(edge[i].to);
			}
		}
	}
	return d;
}
void solve(){
	cin>>n>>k>>c;
	G_init();
	for(int i=1;i<=n-1;i++){
		cin>>u>>v;
		add(u,v);
		add(v,u);
	}
	auto d1=bfs(1);
	int p=max_element(d1.begin(),d1.end())-d1.begin();
	auto d2=bfs(p);
	int q=max_element(d2.begin(),d2.end())-d2.begin();
	auto d3=bfs(q);
	int ans=-1e18;
	for(int i=1;i<=n;i++){
		ans=max(ans,max(d2[i],d3[i])*k-d1[i]*c);
	}
	cout<<ans<<'\n';
}
signed main(){
	int __=1;cin>>__;
	//p_init(1e7);
	while(__--)solve();return 0;
} 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值