sklearn学习

1.数据预处理 Preprocessing & Impute

1.1 数据归一化(Normalization,又称Min-Max Scaling)

                       x^{*} = \frac{x - min(x)}{max(x) - min(x)}

sklearn 当中,我们使用 preprocessing.MinMaxScaler 来实现这个功能。
MinMaxScaler 有一个重要参数:feature_range,控制我们希望把数据压缩到的范围,默认是[0,1]

from sklearn.preprocessing import MinMaxScaler
data = [[-1, 2], [-0.5, 6], [0, 10], [1, 18]]
#不太熟悉numpy的小伙伴,能够判断data的结构吗?
#如果换成表是什么样子?
import pandas as pd
pd.DataFrame(data)

#实现归一化
scaler = MinMaxScaler() #实例化
scaler = scaler.fit(data) #fit,在这里本质是生成min(x)和max(x)
result = scaler.transform(data) #通过接口导出结果
result

result_ = scaler.fit_transform(data) #训练和导出结果一步达成

scaler.inverse_transform(result) #将归一化后的结果逆转

#使用MinMaxScaler的参数feature_range实现将数据归一化到[0,1]以外的范围中

data = [[-1, 2], [-0.5, 6], [0, 10], [1, 18]]
scaler = MinMaxScaler(feature_range=[5,10]) #依然实例化
result = scaler.fit_transform(data) #fit_transform一步导出结果
result

#当X中的特征数量非常多的时候,fit会报错并表示,数据量太大了我计算不了
#此时使用partial_fit作为训练接口
#scaler = scaler.partial_fit(data)

 BONUS: 使用numpy来实现归一化

import numpy as np
X = np.array([[-1, 2], [-0.5, 6], [0, 10], [1, 18]])
#归一化
X_nor = (X - X.min(axis=0)) / (X.max(axis=0) - X.min(axis=0))
X_nor
#逆转归一化
X_returned = X_nor * (X.max(axis=0) - X.min(axis=0)) + X.min(axis=0)
X_returned

1.2 数据标准化(Standardization,又称Z-score normalization)

当数据 (x) 按均值 (μ) 中心化后,再按标准差 (σ) 缩放,数据就会服从为均值为 0 ,方差为 1 的正态分布(即标准正态分布),而这个过程,就叫做数据标准化 (Standardization ,又称 Z-score normalization) ,公式如下:
               
                                                 x^{*} = \frac{x - u }{\sigma }
from sklearn.preprocessing import StandardScaler
data = [[-1, 2], [-0.5, 6], [0, 10], [1, 18]]

scaler = StandardScaler() #实例化
scaler.fit(data) #fit,本质是生成均值和方差

scaler.mean_ #查看均值的属性mean_
scaler.var_ #查看方差的属性var_

x_std = scaler.transform(data) #通过接口导出结果

x_std.mean() #导出的结果是一个数组,用mean()查看均值
x_std.std() #用std()查看方差

scaler.fit_transform(data) #使用fit_transform(data)一步达成结果

scaler.inverse_transform(x_std) #使用inverse_transform逆转标准化
StandardScaler MinMaxScaler 选哪个?
建议先试试看 StandardScaler ,效果不好换 MinMaxScaler

2.缺失值

impute.SimpleImputer 这个类是专门用来填补缺失值的。它包括四个重要参数:
参数
含义 & 输入
missing_values
告诉 SimpleImputer ,数据中的缺失值长什么样,默认空值 np.nan
strategy
我们填补缺失值的策略,默认均值。
输入 “mean” 使用均值填补(仅对数值型特征可用)
输入 “median" 用中值填补(仅对数值型特征可用)
输入 "most_frequent” 用众数填补(对数值型和字符型特征都可用)
输入 “constant" 表示请参考参数 “fifill_value" 中的值(对数值型和字符型特征都可用)
fifill_value
当参数 startegy ”constant" 的时候可用,可输入字符串或数字表示要填充的值,常用 0
copy
默认为True ,将创建特征矩阵的副本,反之则会将缺失值填补到原本的特征矩阵中去。

import pandas as pd
data = pd.read_csv(r"C:\work\learnbetter\micro-class\
 week 3 Preprocessing\Narrativedata.csv",index_col=0)

data.head()
data.info()
#填补年龄

Age = data.loc[:,"Age"].values.reshape(-1,1) #sklearn当中特征矩阵必须是二维
Age[:20]

from sklearn.impute import SimpleImputer
imp_mean = SimpleImputer() #实例化,默认均值填补
imp_median = SimpleImputer(strategy="median") #用中位数填补
imp_0 = SimpleImputer(strategy="constant",fill_value=0) #用0填补

imp_mean = imp_mean.fit_transform(Age) #fit_transform一步完成调取结果
imp_median = imp_median.fit_transform(Age)
imp_0 = imp_0.fit_transform(Age)

imp_mean[:20]
imp_median[:20]
imp_0[:20]

#在这里我们使用中位数填补Age
data.loc[:,"Age"] = imp_median

data.info()

#使用众数填补Embarked
Embarked = data.loc[:,"Embarked"].values.reshape(-1,1)
imp_mode = SimpleImputer(strategy = "most_frequent")
data.loc[:,"Embarked"] = imp_mode.fit_transform(Embarked)

data.info()
BONUS :用 Pandas Numpy 进行填补其实更加简单
import pandas as pd
data = pd.read_csv(r"C:\work\learnbetter\micro-class\week 3 
Preprocessing\Narrativedata.csv",index_col=0)

data.head()

data.loc[:,"Age"] = data.loc[:,"Age"].fillna(data.loc[:,"Age"].median())
#.fillna 在DataFrame里面直接进行填补

data.dropna(axis=0,inplace=True)
#.dropna(axis=0)删除所有有缺失值的行,.dropna(axis=1)删除所有有缺失值的列
#参数inplace,为True表示在原数据集上进行修改,为False表示生成一个复制对象,不修改原数据,默认False

3 处理分类型特征:编码与哑变量

preprocessing.LabelEncoder :标签专用,能够将分类转换为分类数值
from sklearn.preprocessing import LabelEncoder

y = data.iloc[:,-1] #要输入的是标签,不是特征矩阵,所以允许一维

le = LabelEncoder() #实例化
le = le.fit(y) #导入数据
label = le.transform(y)   #transform接口调取结果

le.classes_ #属性.classes_查看标签中究竟有多少类别
label #查看获取的结果label

le.fit_transform(y) #也可以直接fit_transform一步到位

le.inverse_transform(label) #使用inverse_transform可以逆转
data.iloc[:,-1] = label #让标签等于我们运行出来的结果

data.head()

#如果不需要教学展示的话我会这么写:
from sklearn.preprocessing import LabelEncoder
data.iloc[:,-1] = LabelEncoder().fit_transform(data.iloc[:,-1])
preprocessing.OrdinalEncoder :特征专用,能够将分类特征转换为分类数值
from sklearn.preprocessing import OrdinalEncoder

#接口categories_对应LabelEncoder的接口classes_,一模一样的功能
data_ = data.copy()

data_.head()

OrdinalEncoder().fit(data_.iloc[:,1:-1]).categories_

data_.iloc[:,1:-1] = OrdinalEncoder().fit_transform(data_.iloc[:,1:-1])

data_.head()
preprocessing.OneHotEncoder :独热编码,创建哑变量
data.head()

from sklearn.preprocessing import OneHotEncoder
X = data.iloc[:,1:-1]

enc = OneHotEncoder(categories='auto').fit(X)
result = enc.transform(X).toarray()
result

#依然可以直接一步到位,但为了给大家展示模型属性,所以还是写成了三步
OneHotEncoder(categories='auto').fit_transform(X).toarray()

#依然可以还原
pd.DataFrame(enc.inverse_transform(result))

enc.get_feature_names()

result
result.shape

#axis=1,表示跨行进行合并,也就是将量表左右相连,如果是axis=0,就是将量表上下相连
newdata = pd.concat([data,pd.DataFrame(result)],axis=1)

newdata.head()

newdata.drop(["Sex","Embarked"],axis=1,inplace=True)

newdata.columns = 
["Age","Survived","Female","Male","Embarked_C","Embarked_Q","Embarked_S"]

newdata.head()

4 处理连续型特征:二值化与分段

sklearn.preprocessing.Binarizer 
根据阈值将数据二值化(将特征值设置为 0 1 ),用于处理连续型变量。
#将年龄二值化
data_2 = data.copy()

from sklearn.preprocessing import Binarizer
X = data_2.iloc[:,0].values.reshape(-1,1) #类为特征专用,所以不能使用一维数组
transformer = Binarizer(threshold=30).fit_transform(X)

transformer
preprocessing.KBinsDiscretizer
将连续型变量划分为分类变量的类,能够将连续型变量排序后按顺序分箱后编码。总共包含三个重要参数:
参数
含义 & 输入
n_bins
每个特征中分箱的个数,默认 5 ,一次会被运用到所有导入的特征
encode
编码的方式,默认 “onehot”
"onehot" :做哑变量,之后返回一个稀疏矩阵,每一列是一个特征中的一个类别,含有该 类别的样本表示为1 ,不含的表示为 0
“ordinal” :每个特征的每个箱都被编码为一个整数,返回每一列是一个特征,每个特征下含 有不同整数编码的箱的矩阵
"onehot-dense" :做哑变量,之后返回一个密集数组。
strategy
用来定义箱宽的方式,默认 "quantile"
"uniform" :表示等宽分箱,即每个特征中的每个箱的最大值之间的差为
( 特征 .max() - 特征 .min())/(n_bins)
"quantile" :表示等位分箱,即每个特征中的每个箱内的样本数量都相同
"kmeans" :表示按聚类分箱,每个箱中的值到最近的一维 k 均值聚类的簇心得距离都相同
from sklearn.preprocessing import KBinsDiscretizer

X = data.iloc[:,0].values.reshape(-1,1) 
est = KBinsDiscretizer(n_bins=3, encode='ordinal', strategy='uniform')
est.fit_transform(X)

#查看转换后分的箱:变成了一列中的三箱
set(est.fit_transform(X).ravel())

est = KBinsDiscretizer(n_bins=3, encode='onehot', strategy='uniform')
#查看转换后分的箱:变成了哑变量
est.fit_transform(X).toarray()

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值