自定义数据集实战(Pokemon Dataset)

本文介绍如何创建并使用自定义的Pokemon数据集进行深度学习。数据集划分比例为6:2:2,包括加载数据集、构建模型、训练验证测试以及迁移学习四个关键步骤。
摘要由CSDN通过智能技术生成

本数据集中包含的图片元素及数量

我们把每一类train vaild test设置为6:2:2

四个主要工作:

(1)load dataset 数据集加载工作

(2)build model

(3)train vaild test

(4)transfer learning

(1)自定义数据集的加载工作

1.继承通用的母类

自己要实现两个功能,一个是_len_,代表样本的总体数量,返回的时候,返回一个整型的数字。

第二个是_getitem_,返回一个指定的x接口的样本。

举一个最简单的例子

# 最简单的读取数据的例子
class NumbersDataset(Dataset):  #  按上文所述继母类dataset
    def __init__(self,training=True):  # training=true即指明这是一个用来训练的数据集,下边就可以判断
        if training:
            self.samples = list(range(1,1001))
        else:
            self.samples = list(range(1001,1501))

    def _len_(self):
        return len(self.samples)
    def _gemtitem_(self,idx):
        return self.samples[idx] # idx代表数据的位置

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值