要将从 1 开始的索引列添加到 Pandas 数据框中,可以使用 Pandas 中的 reset_index()
方法。以下是一个简单的示例:
import pandas as pd
# 创建一个示例数据框
data = {'A': [1, 2, 3], 'B': [4, 5, 6], 'C': [7, 8, 9]}
df = pd.DataFrame(data)
# 输出原始数据框
print(df)
# 使用 reset_index() 方法添加从 1 开始的索引列
df.reset_index(drop=False, inplace=True)
df['index'] = df['index'] + 1
# 重新命名索引列的名称
df = df.rename(columns={'index': 'new_index'})
# 输出新数据框
print(df)
在这个例子中,我们首先创建了一个示例数据框,并将其输出以供查看。然后,我们使用 reset_index()
方法添加了新的索引列,并将 drop=False
以保留原始索引列。在添加新索引列后,我们将新的索引列中的所有值加 1,以便从 1 开始。最后,我们使用 rename()
方法将新索引列重命名为 new_index
。
请注意,reset_index()
方法需要在索引列之前添加一个新的整数列,以便在保留原始索引的情况下添加一个新的索引列。如果 drop=True
,则原始索引列将被删除。在本例中,我们选择保留原始索引列并添加一个新的索引列。最后请注意:使用inplace=True
直接在原数据帧上操作,使代码更简洁。