自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(5)
  • 收藏
  • 关注

原创 神经网络与深度学习Week4

大语言模型是指具有大规模参数的语言模型,通常是指能够处理大量文本数据并生成具有语言逻辑的文本的模型。本章从预训练语料的收集出发,主要探讨了数据的多种来源(如对话、代码等)和预处理(清洗与编码),并分析了预训练数据数量、质量、多样性等方面对模型效果的影响。语言型预训练的目标是预测下一个单词的概率,掩码语言模型预训的目标是根据输入的部分文本预测掩码位置上的单词。此图简单展示了大语言模型的发展以及各家公司的大语言模型,其中OpenAI的Chatgpt在全球的热度非常高,提高了科研工作者的效率。

2024-05-07 19:58:07 727

原创 神经网络与深度学习 Week3

下面进行One-Stage的简单阐述,其基本思想是简化的二分类问题,在本例-葫芦娃检测中,其只检测一类(葫芦娃脸),此时有不少新学者,例如本人也也有一个疑问:如何确定其大小,位置,概率?2:召回率(Recall):指所有真正为目标的样本中被正确检测出的比例,即检测结果中正确预测为目标的数量与所有真实目标的数量的比值。1:精确度(Precision):指检测出的目标中真正为目标的比例,即检测结果中正确预测为目标的数量与所有预测为目标的数量的比值。3:F1 值:精确度和召回率的调和平均值,是一个综合评价指标。

2024-04-25 14:45:24 401 1

原创 神经网络与深度学习 Week2

在训练中训练的现象有过拟合与欠拟合,所谓欠拟合你神经网络结果很差,而欠拟合是在神经网中train_data中表现良好,而在test中表现结果很差,通常是学习到一些不是想要的信息,例如噪声。在神经网络中,数据是非常重要的一个环节,通常我们将数据分为 train、val、test三个部分,一般的设置比例为70%、15%、15%(根据情况自动调节)。这是一个简单的反向传播,一旦涉及到非常大的数据量时,在进行反向传播计算时会涉及到性能的优化,来提高计算的效率与解决一些计算中遇见的问题。反向传播的基本计算过程。

2024-04-15 17:35:12 386 1

原创 神经网络与深度学习 Week1

c:某些激活函数(如 ReLU)具有良好的梯度特性,可以帮助减轻梯度消失问题。通过使用某些激活函数,特别是那些能够保持梯度在较大范围内的函数,可以有效缓解这个问题。线性分类与线性回归,从输出角度,分别是属于某类的概率与回归具体值,参数的意义也不同,一个是寻找最佳分类直线,一个是最佳拟合直线。b:过引入非线性变换,激活函数增加了神经网络的表达能力,使其能够逼近任意复杂的函数。a:激活函数使得神经网络能够学习和表示非线性函数关系。如果没有激活函数,多层神经网络将等效于单个线性变换,无法捕捉复杂的数据模式。

2024-03-31 12:45:13 246 1

原创 David的工作日志 1.14

的非线性PDE,显然是一个病态方程,通过增加光照约束条件去除方程的病态性。为了求解方程至少需要增加三个无关的辐照方程(此方法源于Woodham)利用现有的模型和光度立体方法结合,结合计算机视觉的一些前沿方法。1:光度立体基本原理: Lambert反射模型、相机正交投影、4:查找文献来设计数据集采集实验流程(未来工作)3:设计一个端到端的视觉检测方法。从光度立体3D重建到视觉检测。SFS图像辐照方程是关于。

2024-01-14 11:53:34 394 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除