目录
一、特征工程简介
#数据预处理完成之后就可以进行特征工程了
#1.特征提取
#2.特征创造
#3.特征选择
特征提取 (feature extraction) | 特征创造 (feature creation) | 特征选择 (feature selection) |
从文字,图像,声音等其他非结构化数据中提取新信息作为特征。比如说,从淘宝宝贝的名称中提取出产品类别,产品颜色,是否是网红产品等等 | 把现有特征进行组合,或互相计算,得到新的特征。比如说,我们有一列特征是速度,一列特征是距离,我们就可以通过让两列相处,创造新的特征:通过距离所花的时间 | 从所有的特征中,选择出有意义,对模型有帮助的特征,以避免必须将所有特征都导入模型去训练的情况 |
在做特征选择之前,有三件非常重要的事:跟数据提供者开会!跟数据提供者开会!跟数据提供者开会! 一定要抓住给你提供数据的人,尤其是理解业务和数据含义的人,跟他们聊一段时间。技术能够让模型起飞,前提是你和业务人员一样理解数据。 所以特征选择的第一步,其实是根据我们的目标,用业务常识来选择特征。来看完 整版泰坦尼克号数据中的这些特征:
其中是否存活是我们的标签。很明显,以判断“是否存活”为目的,票号,登船的舱门,乘客编号明显是无关特征, 可以直接删除。姓名,舱位等级,船舱编号,也基本可以判断是相关性比较低的特征。性别,年龄,船上的亲人数 量,这些应该是相关性比较高的特征。
所以,特征工程的第一步是:理解业务。 当然了,在真正的数据应用领域,比如金融,医疗,电商,我们的数据不可能像泰坦尼克号数据的特征这样少,这 样明显,那如果遇见极端情况,我们无法依赖对业务的理解来选择特征,该怎么办呢?我们有四种方法可以用来选 择特征:过滤法,嵌入法,包装法,和降维算法。
1.导入我们的数据集
#导入数据,让我们使用digit recognizor数据来一展身手
import pandas as pd
data = pd.read_csv(r"/Users/digit recognizor.csv")
X = data.iloc[:,1:]
y = data.iloc[:,0]
X.shape
2.查看数据集
"""
这个数据量相对夸张,如果使用支持向量机和神经网络(维度太高了,并且这两个算法还要升维),很可能会直接跑不出来。使用KNN跑一次大概需要半个小时。
用这个数据举例,能更够体现特征工程的重要性。
"""
data.head()
#X是除去了第一列的数据,也就是我们的特征矩阵
X = data.iloc[:,1:]
X
#y就是我们的第一列的数据,也就是我们的标签
y = data.iloc[:,0]
y
二、filter过滤法
#1.过滤法
# 过滤方法通常用作预处理步骤,特征选择完全独立于任何机器学习算法。
# 它是根据各种统计检验中的分数以及相关性的各项指标来选择特征。
1.方差过滤
①方差过滤 VarianceThreshold 这是通过特征本身的方差来筛选特征的类。比如一个特征本身的方差很小,就表示样本在这个特征上基本没有差异,可能特征中的大多数值都一样,甚至整个特征的取值都相同,那这个特征对于样本区分没有什么作用。所以无论接下来的特征工程要做什么,都要优先消除方差为0的特征。VarianceThreshold有重要参数threshold,表示方差的阈值,表示舍弃所有方差小于threshold的特征,不填默认为0,即删除所有的记录都相同的特征。
①导入相关的库
#导入方差过滤的库
from sklearn.feature_selection import VarianceThreshold
selector = VarianceThreshold() #实例化,不填参数默认方差为0
X_var0 = selector.fit_transform(X) #获取删除不合格特征之后的新特征矩阵
#也可以直接写成 X = VairanceThreshold().fit_transform(X)
#特征数从784变成了708,成功降维
X_var0.shape
pd.DataFrame(X_var0).head()
可以看见,我们已经删除了方差为0的特征,但是依然剩下了708多个特征,明显还需要进一步的特征选择。然而,如果我们知道我们需要多少个特征,方差也可以帮助我们将特征选择一步到位。比如说,我们希望留下一半的特征,那可以设定一个让特征总数减半的方差阈值,只要找到特征方差的中位数,再将这个中位数作为参数threshold的值输入就好了:
②读取每一列的方差
import numpy as np
#读取每一列的方差
X.var()
#从series将数据提取出来
X.var().values
③取方差的中位数
#选取这些数据中的中位数
np.median(X.var().values)
④实例化并训练模型
#将我们上面方差的中位数传入VarianceThreshold进行实例化,然后训练我们的模型
X_fsvar = VarianceThreshold(np.median(X.var().values)).fit_transform(X)
#fsvar feature selection variance
X_fsvar.shape
#我们观察到我们的特征已经从708下降到392了
当特征是二分类时,特征的取值就是伯努利随机变量,这些变量的方差可以计算为:
其中X是特征矩阵,p是二分类特征中的一类在这个特征中所占的概率。
#若特征是伯努利随机变量,假设p=0.8,即二分类特征中某种分类占到80%以上的时候删除特征
#因为有80%都是相似数据,对于数据的整体的特征已经没有太多的区分意义
X_bvar = VarianceThreshold(0.8 * (1 - 0.8)).fit_transform(X)
X_bvar.shape
方差过滤对模型的影响
我们这样做了以后,对模型效果会有怎样的影响呢?在这里,我为大家准备了KNN和随机森林分别在方差过滤前和方差过滤后运行的效果和运行时间的对比。KNN是K近邻算法中的分类算法,其原理非常简单,是利用每个样本到其他样本点的距离来判断每个样本点的相似度,然后对样本进行分类。KNN必须遍历每个特征和每个样本,因而特征越多,KNN的计算也就会越缓慢。
①导入模块和数据集
#1. 导入模块并准备数据
#KNN vs 随机森林在不同方差过滤效果下的对比
#导入随机森林模块
from sklearn.ensemble import RandomForestClassifier as RFC
#在最近邻模块中导入KNN算法
from sklearn.neighbors import KNeighborsClassifier as KNN
#导入交叉验证的模块
from sklearn.model_selection import cross_val_score
import numpy as np
#x是我们的特征
X = data.iloc[:,1:]
#y是我们的标签
y = data.iloc[:,0]
#这个是我们刚刚已经用过的去除掉了一般的特征的这样的一个数据集
#也就是我们上面运行过后的特征只剩下392个特征
X_fsvar = VarianceThreshold(np.median(X.var().values)).fit_transform(X)
X_fsvar
②对于knn的影响
原始的数据集
#1.对于knn的影响
#这里我们使用的是原始的数据集
cross_val_score(KNN(),X,y,cv=5).mean()
%%timeit
#上面那个%%timeit一定要敲在第一行
#python中的魔法命令,可以直接使用%%timeit来计算运行这个cell中的代码所需的时间
#为了计算所需的时间,需要将这个cell中的代码运行很多次(通常是7次)后求平均值,因此运行%%timeit的时间会
# 远远超过cell中的代码单独运行的时间
cross_val_score(KNN(),X,y,cv=5).mean()
过滤之后的数据集
#这里我们使用的是降维之后仅有392个特征的数据集再次进行KNN运算
cross_val_score(KNN(),X_fsvar,y,cv=5).mean()
%%timeit
cross_val_score(KNN(),X,y,cv=5).mean()
#这里我们观察到使用knn,过滤之后的效果非常明显,预测的准确率有一点点提升,并且平均运行时间减少了大概1.6s
③对于随机森林的影响
原始的数据集
#2.对于随机森林的影响
#使用原始的,未过滤特征的数据集(也就是有784个特征的)(传入参数限制树的生成个数为10,随机的模式为0),交叉验证5次
cross_val_score(RFC(n_estimators=10,random_state=0),X,y,cv=5).mean()
%%time
cross_val_score(RFC(n_estimators=10,random_state=0),X,y,cv=5).mean()
过滤之后的数据集
#我们观察到随机森林的运行速度比KNN要快上很多
#我们再试试方差过滤之后的数据(也就是只有392个特征的数据)
cross_val_score(RFC(n_estimators=10,random_state=0),X_fsvar,y,cv=5).mean()
%%timeit
cross_val_score(RFC(n_estimators=10,random_state=0),X_fsvar,y,cv=5).mean()
#从下面的数据中,我们可以看到这个方差过滤之后的数据集其实并没有对我们的随机森林的算法有太多的提升
④总结原因
首先可以观察到的是,随机森林的准确率略逊于KNN,但运行时间却只有KNN的20%左右,只需要6.67秒钟。其次,方差过滤后,随机森林的准确率也微弱上升,但运行时间却几乎是没什么变化,依然是6.67秒钟。
为什么随机森林运行如此之快?为什么方差过滤对随机森林没很大的有影响?
这是由于两种算法的原理中涉及到的 计算量不同。
最近邻算法KNN,单棵决策树,支持向量机SVM,神经网络,回归算法,都需要遍历特征或升维来进行运算,所以他们本身的运算量就很大,需要的时间就很长,因此方差过滤这样的特征选择对他们来说就尤为重要。
但对于不需要遍历特征的算法,比如随机森林,它随机选取特征进行分枝,本身运算就非常快速,因此特征选 择对它来说效果平平。
这其实很容易理解,无论过滤法如何降低特征的数量,随机森林也只会选取固定数量的特征 来建模;而最近邻算法就不同了,特征越少,距离计算的维度就越少,模型明显会随着特征的减少变得轻量。
因此,过滤法的主要对象是:需要遍历特征或升维的算法们,
而过滤法的主要目的是:在维持算法表现的前提下,帮助算法们降低计算成本
思考:过滤法对随机森林无效,却对树模型有效?
从算法原理上来说,传统决策树需要遍历所有特征,计算不纯度后进行分枝,而随机森林却是随机选择特征进行计算和分枝,因此随机森林的运算更快,过滤法对随机森林无用,对决策树却有用
在sklearn中,决策树和随机森林都是随机选择特征进行分枝(不记得的小伙伴可以去复习第一章:决策树, 参数random_state),但决策树在建模过程中随机抽取的特征数目却远远超过随机森林当中每棵树随机抽取 的特征数目(比如说对于这个780维的数据,随机森林每棵树只会抽取10~20个特征,而决策树可能会抽取 300~400个特征),因此,过滤法对随机森林无用,却对决策树有用 也因此,在sklearn中,随机森林中的每棵树都比单独的一棵决策树简单得多,高维数据下的随机森林的计算 、比决策树快很多。
⑤方差过滤对于算法的影响总结
对受影响的算法来说,我们可以将方差过滤的影响总结如下:
阈值很小 被过滤掉得特征比较少 | 阈值比较大 被过滤掉的特征有很多 | |
模型表现 | 不会有太大影响 | 可能变更好,代表被滤掉的特征大部分是噪音 也可能变糟糕,代表被滤掉的特征中很多都是有效特征 |
运行时间 | 可能降低模型的运行时间基于方差很小的特征有多少当方差很小的特征不多时对模型没有太大影响 | 一定能够降低模型的运行时间 算法在遍历特征时的计算越复杂,运行时间下降得越多 |
在我们的对比当中,我们使用的方差阈值是特征方差的中位数,因此属于阈值比较大,过滤掉的特征比较多的情况。我们可以观察到,无论是KNN还是随机森林,在过滤掉一半特征之后,模型的精确度都上升了。这说明被我们 过滤掉的特征在当前随机模式(random_state = 0)下大部分是噪音。那我们就可以保留这个去掉了一半特征的数 据,来为之后的特征选择做准备。当然,如果过滤之后模型的效果反而变差了,我们就可以认为,被我们过滤掉的 特征中有很多都有有效特征,那我们就放弃过滤,使用其他手段来进行特征选择。
思考:虽然随机森林算得快,但KNN的效果比随机森林更好?
调整一下n_estimators试试看,随着树的棵树增多,随机森林的准确率会不断提升的。
取超参数threshold
我们怎样知道,方差过滤掉的到底时噪音还是有效特征呢?过滤后模型到底会变好还是会变坏呢?
答案是:每个数 据集不一样,只能自己去尝试。这里的方差阈值,其实相当于是一个超参数,要选定最优的超参数,我们可以画学习曲线,找模型效果最好的点。但现实中,我们往往不会这样去做,因为这样会耗费大量的时间。我们只会使用阈值为0或者阈值很小的方差过滤,来为我们优先消除一些明显用不到的特征,然后我们会选择更优的特征选择方法继续削减特征数量。
2.相关性过滤
方差挑选完毕之后,我们就要考虑下一个问题:相关性了。
我们希望选出与标签相关且有意义的特征,因为这样的 特征能够为我们提供大量信息。如果特征与标签无关,那只会白白浪费我们的计算内存,可能还会给模型带来噪 音。在sklearn当中,我们有三种常用的方法来评判特征与标签之间的相关性:卡方,F检验,互信息。
①卡方
卡方过滤
卡方过滤是专门针对离散型标签(即分类问题)的相关性过滤。
卡方检验类feature_selection.chi2计算每个非负特征(需要对数据进行预处理)和标签之间的卡方统计量,并依照卡方统计量由高到低为特征排名。再结合feature_selection.SelectKBest 这个可以输入”评分标准“来选出前K个分数最高的特征的类,我们可以借此除去最可能独立于标签,与我们分类目的无关的特征。
另外,如果卡方检验检测到某个特征中所有的值都相同,会提示我们使用方差先进行方差过滤。并且,刚才我们已经验证过,当我们使用方差过滤筛选掉一半的特征后,模型的表现时提升的。因此在这里,我们使用threshold=中位数时完成的方差过滤的数据来做卡方检验(如果方差过滤后模型的表现反而降低了,那我们就不会使用方差过滤 后的数据,而是使用原数据)
导入相关的库
from sklearn.ensemble import RandomForestClassifier as RFC
from sklearn.model_selection import cross_val_score
#用来选择分数最高的k个类的库
from sklearn.feature_selection import SelectKBest
#卡方检验的库
from sklearn.feature_selection import chi2
#假设在这里我知道我需要300个特征
#第一个参数chi2,告诉SelectKbest,我们所用的统计量是卡方,
#第二个参数300,告诉选取前300个卡方值最高的特征
#然后直接实例化,然后训练模型X_fsvar(特征矩阵,已经使用中位数去除掉一些特征之后,只剩下392个特征的矩阵),y(标签)
X_fschi = SelectKBest(chi2, k=300).fit_transform(X_fsvar, y)
X_fschi.shape
#看一下交叉验证的效果
cross_val_score(RFC(n_estimators=10,random_state=0),X_fschi,y,cv=5).mean()
可以看出,模型的效果降低了,这说明我们在设定k=300的时候删除了与模型相关且有效的特征,我们的K值设置 得太小,要么我们需要调整K值,要么我们必须放弃相关性过滤。当然,如果模型的表现提升,则说明我们的相关性过滤是有效的,是过滤掉了模型的噪音的,这时候我们就保留相关性过滤的结果。
②选取超参数K
那如何设置一个最佳的K值呢?在现实数据中,数据量很大,模型很复杂的时候,我们也许不能先去跑一遍模型看 看效果,而是希望最开始就能够选择一个最优的超参数k。那第一个方法,就是我们之前提过的学习曲线:
%matplotlib inline
import matplotlib.pyplot as plt
score = []
#i在这里遍历的范围就是我们的取值
for i in range(390,200,-10):
#实例化,训练
X_fschi = SelectKBest(chi2, k=i).fit_transform(X_fsvar, y)
#打分
once = cross_val_score(RFC(n_estimators=10,random_state=0),X_fschi,y,cv=5).mean()
#将打分之后的结果追加到结果数组中
score.append(once)
plt.plot(range(390,200,-10),score)
plt.show()
通过这条曲线,我们可以观察到,随着K值的不断增加,模型的表现不断上升,这说明,K越大越好,数据中所有的特征都是与标签相关的。但是运行这条曲线的时间同样也是非常地长,接下来我们就来介绍一种更好的选择k的方法:看p值选择k。
卡方检验的本质是推测两组数据之间的差异,其检验的原假设是”两组数据是相互独立的”。卡方检验返回卡方值和 P值两个统计量,其中卡方值很难界定有效的范围,而p值,我们一般使用0.01或0.05作为显著性水平,即p值判断的边界,具体我们可以这样来看:
P值 | <=0.05或0.01 | >0.05或0.01 |
数据差异 | 差异不是自然形成的 | 这些差异是很自然的样本误差 |
相关性 | 两组数据是相关的 | 两组数据是相互独立的 |
原假设 | 拒绝原假设,接受备择假设 | 接受原假设 |
从特征工程的角度,我们希望选取卡方值很大,p值小于0.05的特征,即和标签是相关联的特征。而调用 SelectKBest之前,我们可以直接从chi2实例化后的模型中获得各个特征所对应的卡方值和P值。
#将我们的X_fsvar也就是特征矩阵和标签y传给chi2,也就是卡方之后,
#其会将chivalue也就是卡方值(K值)和pvalues_chi也就是p值返回
chivalue, pvalues_chi = chi2(X_fsvar,y)
chivalue
pvalues_chi
#从下图中看出所有的数据都是<0.01的也就是说所有的数据都是和我们的标签相关的(也就是说对模型有贡献)
#所以无论去掉哪一个特征,我们模型的表现都会下降
#k取多少?我们想要消除所有p值大于设定值,比如0.05或0.01的特征:
#特征的总数减去p值中大于0.05的部分,就得到了k的取值
k = chivalue.shape[0] - (pvalues_chi > 0.05).sum()
#或者使用交叉验证进行打分
#X_fschi = SelectKBest(chi2, k=填写具体的k).fit_transform(X_fsvar, y)
#cross_val_score(RFC(n_estimators=10,random_state=0),X_fschi,y,cv=5).mean()
chivalue.shape[0]
(pvalues_chi > 0.05)
(pvalues_chi > 0.05).sum()
可以观察到,所有特征的p值都是0,这说明对于digit recognizor这个数据集来说,方差验证已经把所有和标签无关的特征都剔除了,或者这个数据集本身就不含与标签无关的特征。在这种情况下,舍弃任何一个特征,都会舍弃对模型有用的信息,而使模型表现下降,因此在我们对计算速度感到满意时,我们不需要使用相关性过滤来过滤我们的数据。如果我们认为运算速度太缓慢,那我们可以酌情删除一些特征,但前提是,我们必须牺牲模型的表现。 接下来,我们试试看用其他的相关性过滤方法验证一下我们在这个数据集上的结论
③F检验
F检验,又称ANOVA,方差齐性检验,是用来捕捉每个特征与标签之间的线性关系的过滤方法。它即可以做回归也 可以做分类,因此包含feature_selection.f_classif(F检验分类)和feature_selection.f_regression(F检验回 归)两个类。
其中F检验分类用于标签是离散型变量的数据,而F检验回归用于标签是连续型变量的数据。
和卡方检验一样,这两个类需要和类SelectKBest连用,并且我们也可以直接通过输出的统计量来判断我们到底要 设置一个什么样的K。
需要注意的是,F检验在数据服从正态分布时效果会非常稳定,因此如果使用F检验过滤,我 们会先将数据转换成服从正态分布的方式。
F检验的本质是寻找两组数据之间的线性关系,其原假设是“数据不存在显著的线性关系”。它返回F值和p值两个统计量。和卡方过滤一样,我们希望选取p值小于0.05或0.01的特征,这些特征与标签时显著线性相关的,而p值大于 0.05或0.01的特征则被我们认为是和标签没有显著线性关系的特征,应该被删除。以F检验的分类为例,我们继续在数字数据集上来进行特征选择:
#导入f检验的模块
from sklearn.feature_selection import f_classif
F, pvalues_f = f_classif(X_fsvar,y)
F
pvalues_f
#和我们上面的计算公式相同
k = F.shape[0] - (pvalues_f > 0.05).sum()
#也可以使用交叉验证进行打分
#X_fsF = SelectKBest(f_classif, k=填写具体的k).fit_transform(X_fsvar, y)
#cross_val_score(RFC(n_estimators=10,random_state=0),X_fsF,y,cv=5).mean()
k
得到的结论和我们用卡方过滤得到的结论一模一样:没有任何特征的p值大于0.01,所有的特征都是和标签相关的,因此我们不需要相关性过滤。
④互信息法
互信息法是用来捕捉每个特征与标签之间的任意关系(包括线性和非线性关系)的过滤方法。
和F检验相似,它既 可以做回归也可以做分类,并且包含两个类feature_selection.mutual_info_classif(互信息分类)和 feature_selection.mutual_info_regression(互信息回归)。这两个类的用法和参数都和F检验一模一样,不过互信息法比F检验更加强大,F检验只能够找出线性关系,而互信息法可以找出任意关系。 互信息法不返回p值或F值类似的统计量,它返回“每个特征与目标之间的互信息量的估计”,这个估计量在[0,1]之间 取值,为0则表示两个变量独立,为1则表示两个变量完全相关。以互信息分类为例的代码如下:
#导入互信息法的库
from sklearn.feature_selection import mutual_info_classif as MIC
#返回两列数据的互信息量
#分别传入我们的特征矩阵和标签
result = MIC(X_fsvar,y)
result
k = result.shape[0] - sum(result <= 0)
k
#可以使用交叉验证进行打分
#X_fsmic = SelectKBest(MIC, k=填写具体的k).fit_transform(X_fsvar, y)
#cross_val_score(RFC(n_estimators=10,random_state=0),X_fsmic,y,cv=5).mean()
所有特征的互信息量估计都大于0,因此所有特征都与标签相关。 当然了,无论是F检验还是互信息法,大家也都可以使用学习曲线,只是使用统计量的方法会更加高效。当统计量判断已经没有特征可以删除时,无论用学习曲线如何跑,删除特征都只会降低模型的表现。当然了,如果数据量太庞大,模型太复杂,我们还是可以牺牲模型表现来提升模型速度,一切都看大家的具体需求。
过滤法总结
到这里我们学习了常用的基于过滤法的特征选择,包括方差过滤,基于卡方,F检验和互信息的相关性过滤,讲解 了各个过滤的原理和面临的问题,以及怎样调这些过滤类的超参数。通常来说,先使用方差过滤,然后 使用互信息法来捕捉相关性,不过了解各种各样的过滤方式也是必要的。所有信息被总结在下表:
类 | 说明 | 超参数的选择 |
VarianceThreshold | 方差过滤,可输入方差阈值,返回方差大于阈值的新特征矩阵 | 看具体数据究竟是含有更多噪声还是更多有效特征 一般就使用0或1来筛选 也可以画学习曲线或取中位数跑模型来帮助确认 |
SelectKBest | 用来选取K个统计量结果最佳的特征,生成符合统计量要求的新特征矩阵 | 看配合使用的统计量 |
chi2 | 卡方检验,专用于分类算法,捕捉相关性 | 追求p小于显著性水平的特征 |
f_classif | F检验分类,只能捕捉线性相关性要求数据服从正态分布 | 追求p小于显著性水平的特征 |
f_regression | F检验回归,只能捕捉线性相关性要求数据服从正态分布 | 追求p小于显著性水平的特征 |
mutual_info_classif | 互信息分类,可以捕捉任何相关性不能用于稀疏矩阵 | 追求互信息估计大于0的特征 |
mutual_info_regression | 互信息回归,可以捕捉任何相关性不能用于稀疏矩阵 | 追求互信息估计大于0的特征 |
三、Embedded嵌入法
嵌入法是一种让算法自己决定使用哪些特征的方法,即特征选择和算法训练同时进行。
在使用嵌入法时,我们先使用某些机器学习的算法和模型进行训练,得到各个特征的权值系数,根据权值系数从大到小选择特征。
这些权值系 数往往代表了特征对于模型的某种贡献或某种重要性,比如决策树和树的集成模型中的feature_importances_属 性,可以列出各个特征对树的建立的贡献,我们就可以基于这种贡献的评估,找出对模型建立最有用的特征。
因此相比于过滤法,嵌入法的结果会更加精确到模型的效用本身,对于提高模型效力有更好的效果。并且,由于考虑特 征对模型的贡献,因此无关的特征(需要相关性过滤的特征)和无区分度的特征(需要方差过滤的特征)都会因为缺乏对模型的贡献而被删除掉,可谓是过滤法的进化版
然而,嵌入法也不是没有缺点。
过滤法中使用的统计量可以使用统计知识和常识来查找范围(如p值应当低于显著性水平0.05),而嵌入法中使用 的权值系数却没有这样的范围可找——我们可以说,权值系数为0的特征对模型丝毫没有作用,但当大量特征都对模型有贡献且贡献不一时,我们就很难去界定一个有效的临界值。
这种情况下,模型权值系数就是我们的超参数, 我们或许需要学习曲线,或者根据模型本身的某些性质去判断这个超参数的最佳值究竟应该是多少。
另外,嵌入法引入了算法来挑选特征,因此其计算速度也会和应用的算法有很大的关系。如果采用计算量很大,计算缓慢的算法,嵌入法本身也会非常耗时耗力。并且,在选择完毕之后,我们还是需要自己来评估模型。
feature_selection.SelectFromModel class sklearn.feature_selection.SelectFromModel (estimator,
threshold=None,
prefit=False,
norm_order=1,
max_features=None)
SelectFromModel是一个元变换器,可以与任何在拟合后具有coef_,feature_importances_属性或参数中可选惩罚项的评估器一起使用
(比如随机森林和树模型就具有属性feature_importances_,逻辑回归就带有l1和l2惩罚项,线性支持向量机也支持l2惩罚项)。
对于有feature_importances_的模型来说,若重要性低于提供的阈值参数,则认为这些特征不重要并被移除。 feature_importances_的取值范围是[0,1],如果设置阈值很小,比如0.001,就可以删除那些对标签预测完全没贡献的特征。如果设置得很接近1,可能只有一两个特征能够被留下。
使用惩罚项的模型的嵌入法
而对于使用惩罚项的模型来说,正则化惩罚项越大,特征在模型中对应的系数就会越小。当正则化惩罚项大到 一定的程度的时候,部分特征系数会变成0,当正则化惩罚项继续增大到一定程度时,所有的特征系数都会趋于0。 但是我们会发现一部分特征系数会更容易先变成0,这部分系数就是可以筛掉的。也就是说,我们选择特征系数较大的特征。
另外,支持向量机和逻辑回归使用参数C来控制返回的特征矩阵的稀疏性,参数C越 小,返回的特征越少。Lasso回归,用alpha参数来控制返回的特征矩阵,alpha的值越大,返回的特征越少。
参数 | 说明 |
estimator | 使用的模型评估器,只要是带feature_importances_或者coef_属性,或带有l1和l2惩罚项的模型都可以使用 |
threshold | 特征重要性的阈值,重要性低于这个阈值的特征都将被删除 |
prefit | 默认False,判断是否将实例化后的模型直接传递给构造函数。如果为True,则必须直接调用fit和transform,不能使用fit_transform,并且SelectFromModel不能与cross_val_score,GridSearchCV和克隆估计器的类似实用程序一起使用。 |
norm_order | k可输入非零整数,正无穷,负无穷,默认值为1 在评估器的coef_属性高于一维的情况下,用于过滤低于阈值的系数的向量的范 数的阶数。 |
max_features | 在阈值设定下,要选择的最大特征数。要禁用阈值并仅根据max_features选择,请设置 threshold = -np.inf |
我们重点要考虑的是前两个参数。在这里,我们使用随机森林为例,则需要学习曲线来帮助我们寻找最佳特征值。
1.导入相关的库
#导入特征选择模块
from sklearn.feature_selection import SelectFromModel
#导入随机森林模块
from sklearn.ensemble import RandomForestClassifier as RFC
2.实例化训练模型
#随机森林实例化
#这一片森林中生成10棵树,随机模式为0
RFC_ = RFC(n_estimators =10,random_state=0)
#selectfrommodel,第一个参数是我们实例化好的模型,第二个参数是我们特征的阈值(小于这个阈值的特征都会被砍掉)
#然后fit_transform训练模型,中传入两个参数,第一个参数是我们的特征,第二个参数是我们的标签
#这里我们传入的X是我们过滤前的数据,因为我们想看看嵌入法在不处理的前提下,会对我们的数据做点什么
X_embedded = SelectFromModel(RFC_,threshold=0.005).fit_transform(X,y)
#在这里我只想取出来有限的特征。0.005这个阈值对于有780个特征的数据来说,是非常高的阈值,因为平均每个特征
# 只能够分到大约0.001的feature_importances_
X_embedded.shape
#模型的维度明显被降低了,一下子删掉了大概740个特征
#同样的,我们也可以画学习曲线来找最佳阈值
3.绘制学习曲线
#首先导入我们处理数列和画图的库
import numpy as np
import matplotlib.pyplot as plt
#看一下在随机森林的模型下,看一看RFC中每一个特征的重要性如何
RFC_.fit(X,y).feature_importances_
#查看全部的特征重要性中的最大值
(RFC_.fit(X,y).feature_importances_).max()
#在0到我们的特征重要性中的最大值的范围内取20个数据,作为我们的threshold
#这个threshold就是我们下面我们希望selectfrommodel中希望所遍历的阈值是哪些数
threshold = np.linspace(0,(RFC_.fit(X,y).feature_importances_).max(),20)
#我们让我们的这些阈值在这些数据中遍历(小于阈值的数据会被砍掉)
#然后我们从中挑选出一个表现最好的点,来作为我们阈值的最优点
threshold
score_test = []
for i in threshold:
#按照我们上面设定的阈值将低于阈值的特征删除掉,X_embedded就是我们新生成的特征矩阵
X_embedded = SelectFromModel(RFC_,threshold=i).fit_transform(X,y)
#交叉验证,第一个参数为实例化好的随机森林模型,第二个参数为我们上面新生成的特征矩阵,第三个参数为交叉验证5次,然后求平均值
once = cross_val_score(RFC_,X_embedded,y,cv=5).mean()
#将运算出来的结果追加到我们的结果列表中
score_test.append(once)
plt.figure(figsize=[20,5])
plt.plot(threshold,score_test)
plt.xticks(threshold)
plt.show()
#我们从下面的图中观察到在0.004之前,我们的模型的准确度还是很高的,但是之后就大幅度下滑,在0.01142之后,就基本上维持在0.2了
#这说明我们想要选取一个很好的阈值,我们应该在下面的曲线的前半段选择
#我们不妨从中挑选一个数值来查看一下模型的效果
#这里我们挑选0.00067来看一下具体的状况
X_embedded = SelectFromModel(RFC_,threshold=0.00067).fit_transform(X,y)
X_embedded.shape
#交叉验证一下,查看效果
cross_val_score(RFC_,X_embedded,y,cv=5).mean()
我们之前使用方差过滤的特征(有394个),然后用随机森林跑的结果是0.9390476190476191 跟这个相比较(有324个特征),反而发现这个的准确率更高
这是由于嵌入法比方差过滤更具体到模型的表现的缘故,换一 个算法,使用同样的阈值,效果可能就没有这么好了。
4.绘制更加精细的学习曲线
和其他调参一样,我们可以在第一条学习曲线后选定一个范围,使用细化的学习曲线来找到最佳值:
score2 = []
#进一步查看在0到0.00134之间的阈值会有怎样的表现
for i in np.linspace(0,0.00134,20):
X_embedded = SelectFromModel(RFC_,threshold=i).fit_transform(X,y)
once = cross_val_score(RFC_,X_embedded,y,cv=5).mean()
score2.append(once)
plt.figure(figsize=[20,5])
plt.plot(np.linspace(0,0.00134,20),score2)
plt.xticks(np.linspace(0,0.00134,20))
plt.show()
查看结果,果然0.00067并不是最高点,真正的最高点0.000071已经将模型效果提升到了94%以上。我们使用 0.000071来跑一跑我们的SelectFromModel:
#selectfrommodel实例化,RFC_是随机森林,threshold是我们设置的阈值
X_embedded = SelectFromModel(RFC_,threshold=0.000071).fit_transform(X,y)
X_embedded.shape
#查看交叉验证的打分
cross_val_score(RFC_,X_embedded,y,cv=5).mean()
#这里的随机森林基本上跑到准确率的上限了
#我们想要进一步提高准确率,可以试试看修改随机森林的n_estimators参数,来看看往森林中添加更多的树会不会有更高的效果
cross_val_score(RFC(n_estimators=100,random_state=0),X_embedded,y,cv=5).mean()
已经完全可以和 KNN相匹敌(KNN的准确率是96.58%),接下来再对随机森林进行调参,准确率应该还可以再升高不少。
可见, 在嵌入法下,我们很容易就能够实现特征选择的目标:减少计算量,提升模型表现。因此,比起要思考很多统计量的过滤法来说,嵌入法可能是更有效的一种方法。然而,在算法本身很复杂的时候,过滤法的计算远远比嵌入法要快,所以大型数据中,我们还是会优先考虑过滤法。
四、Wrapper包装法
包装法也是一个特征选择和算法训练同时进行的方法,与嵌入法十分相似,它也是依赖于算法自身的选择,比如 coef_属性或feature_importances_属性来完成特征选择。
但不同的是,我们往往使用一个目标函数作为黑盒来帮助我们选取特征,而不是自己输入某个评估指标或统计量的阈值。
包装法在初始特征集上训练评估器,并且通过 coef_属性或通过feature_importances_属性获得每个特征的重要性。然后,从当前的一组特征中修剪最不重要的特征。在修剪的集合上递归地重复该过程,直到最终到达所需数量的要选择的特征。区别于过滤法和嵌入法的一次 训练解决所有问题,包装法要使用特征子集进行多次训练,因此它所需要的计算成本是最高的。
注意,在这个图中的“算法”,指的不是我们最终用来导入数据的分类或回归算法(即不是随机森林),而是专业的数据挖掘算法,即我们的目标函数。
这些数据挖掘算法的核心功能就是选取最佳特征子集。 最典型的目标函数是递归特征消除法(Recursive feature elimination, 简写为RFE)。
它是一种贪婪的优化算法, 旨在找到性能最佳的特征子集。 它反复创建模型,并在每次迭代时保留最佳特征或剔除最差特征,下一次迭代时, 它会使用上一次建模中没有被选中的特征来构建下一个模型,直到所有特征都耗尽为止。 然后,它根据自己保留或 剔除特征的顺序来对特征进行排名,最终选出一个最佳子集。包装法的效果是所有特征选择方法中最利于提升模型表现的,它可以使用很少的特征达到很优秀的效果。除此之外,在特征数目相同时,包装法和嵌入法的效果能够匹敌,不过它比嵌入法算得更见缓慢,所以也不适用于太大型的数据。相比之下,包装法是最能保证模型效果的特征选择方法。
feature_selection.RFE class sklearn.feature_selection.RFE (
estimator,
n_features_to_select=None,
step=1,
verbose=0)
参数estimator是需要填写的实例化后的评估器,
n_features_to_select是想要选择的特征个数,
step表示每次迭代中希望移除的特征个数。
除此之外,RFE类有两个很重要的属性, .support_:返回所有的特征的是否最后被选中的布尔矩阵, 以及.ranking_返回特征的按数次迭代中综合重要性的排名。
类feature_selection.RFECV会在交叉验证循环中执行RFE以找到最佳数量的特征,增加参数cv,其他用法都和RFE一模一样。
1.导入相关的库
#导入RFE包
from sklearn.feature_selection import RFE
2.实例化训练模型
#第一个参数是我们已经实例化好的模型,也就是我们上面的随机森林
#n_features_to_select是我们要挑选的特征个数
#step=50,就是步长为50,每迭代一次,就帮我删掉50个特征
#实例化完毕之后,训练模型.fit传入我们的特征矩阵X和标签y
selector = RFE(RFC_, n_features_to_select=340, step=50).fit(X, y)
#返回所有的特征的是否最后被选中的布尔矩阵,
#被选中了就是TRUE,没被选中就是FALSE
#然后我们直接使用.sum()进行求和,查看我们一共选中了多少个特征
selector.support_.sum()
#这里选择出来的特征个数,也就是我们上面指定的340个
selector.support_
# .ranking_返回特征的按数次迭代中综合重要性的排名。
#越重要的特征数值越小(1比10更加重要)
selector.ranking_
#可以得到使用我们包装法得到的特征矩阵
X_wrapper = selector.transform(X)
X_wrapper
#使用交叉验证查看分数
cross_val_score(RFC_,X_wrapper,y,cv=5).mean()
#一般来说包装法和我们的嵌入法的运行效果其实差不多,但是包装法要更快
#嵌入法的打分是0.9388809523809524,相差了一点点
3.绘制学习曲线
# 我们也可以对包装法画学习曲线:
#因为我不知道我应该选择多少个特征,我们模型的效果才会更好,所以我们这里绘制针对于n_features_to_select的曲线
score = []
for i in range(1,751,50):
X_wrapper = RFE(RFC_,n_features_to_select=i, step=50).fit_transform(X,y)
once = cross_val_score(RFC_,X_wrapper,y,cv=5).mean()
score.append(once)
plt.figure(figsize=[20,5])
plt.plot(range(1,751,50),score)
plt.xticks(range(1,751,50))
plt.show()
明显能够看出,在包装法下面,应用50个特征时,模型的表现就已经达到了90%以上,比嵌入法和过滤法都高效很多。(包装法最容易在最小的特征数目下,找到最优的模型)我们可以放大图像,寻找模型变得非常稳定的点来画进一步的学习曲线(就像我们在嵌入法中做的那样)。如果我们此时追求的是最大化降低模型的运行时间,我们甚至可以直接选择50作为特征的数目,这是一个在缩减了 94%的特征的基础上,还能保证模型表现在90%以上的特征组合,不可谓不高效。
同时,我们提到过,在特征数目相同时,包装法能够在效果上匹敌嵌入法。试试看如果我们也使用340作为特征数 目,运行一下,可以感受一下包装法和嵌入法哪一个的速度更加快。由于包装法效果和嵌入法相差不多,在更小的 范围内使用学习曲线,我们也可以将包装法的效果调得很好。
总结
过滤法更快速,但更粗糙。包装法和嵌入法更精确,比较适合具体到算法去调整,但计算量比较大,运行时间长。当数据量很大的时候,优先使用方差过滤和互信息法调整,再上其他特 征选择方法。使用逻辑回归时,优先使用嵌入法。使用支持向量机时,优先使用包装法。迷茫的时候,从过滤法走起,看具体数据具体分析