pure sky873
码龄3年
关注
提问 私信
  • 博客:10,594
    10,594
    总访问量
  • 12
    原创
  • 141,020
    排名
  • 76
    粉丝
  • 0
    铁粉

个人简介:南开大学 软件工程研究生

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:浙江省
  • 加入CSDN时间: 2021-10-07
博客简介:

weixin_62688777的博客

查看详细资料
  • 原力等级
    当前等级
    2
    当前总分
    126
    当月
    0
个人成就
  • 获得97次点赞
  • 内容获得2次评论
  • 获得155次收藏
创作历程
  • 11篇
    2024年
  • 1篇
    2023年
成就勋章
兴趣领域 设置
  • Python
    python
  • 编程语言
    c++
  • 数据结构与算法
    动态规划模拟退火算法启发式算法
创作活动更多

2024 博客之星年度评选报名已开启

博主的专属年度盛宴,一年仅有一次!MAC mini、大疆无人机、华为手表等精美奖品等你来拿!

去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

强化学习的基本概念和术语

强化学习(Reinforcement Learning, RL)是机器学习的一个重要分支,它关注的是如何让智能体(Agent)在与环境的交互中通过试错学习来最大化累积奖励。
原创
发布博客 2024.08.06 ·
329 阅读 ·
10 点赞 ·
0 评论 ·
1 收藏

简单明了的说明白PID算法和MPC算法原理和对比

适用范围:PID 控制器适用于较简单的系统和工业应用;而 MPC 更适合于需要考虑复杂约束和预测未来行为的系统。计算复杂度:PID 控制器计算简单,易于实现;MPC 控制器则需要解决优化问题,计算量较大。灵活性:PID 控制器灵活性较低,难以处理复杂的约束;MPC 控制器可以灵活地处理多种约束。控制性能:在简单系统中,PID 控制器可以提供满意的性能;而对于复杂系统,MPC 控制器可以提供更好的控制性能。选择哪种控制策略取决于具体的应用场景、系统特性以及可用资源等因素。
原创
发布博客 2024.07.26 ·
2559 阅读 ·
42 点赞 ·
0 评论 ·
35 收藏

MDP算法在自动驾驶中的应用

在自动驾驶中,MDP算法可以用于建模和解决车辆的路径规划和决策问题。以下是MDP在自动驾驶中的一些应用方式:状态(States):动作(Actions):转移概率(Transition Probabilities):奖励(Rewards):策略(Policy):折扣因子(Discount Factor):环境感知:状态表示:动作空间定义:模型学习:奖励函数设计:求解MDP:策略执行:反馈与调整:通过合理设计MDP模型并选择合适的求解算法,自动驾驶系统可以更加智能地处理复杂的交通环境和驾驶任务。
原创
发布博客 2024.07.24 ·
453 阅读 ·
3 点赞 ·
0 评论 ·
9 收藏

C++STL中的常见算法

【代码】C++STL中的常见算法。
原创
发布博客 2024.07.23 ·
486 阅读 ·
3 点赞 ·
0 评论 ·
5 收藏

STL库中常用容器

是C++ STL中的一个关联容器,它提供了一种方式来存储键值对,其中每个键都是唯一的,并且键会按照一定的顺序自动排序(通常是升序)。C++标准模板库(STL)提供了一组丰富的容器,用于存储数据集合。每个容器都有其特定的用途和性能特点。例如,如果你需要快速访问元素并且元素数量变化不大,如果你需要频繁地在序列中间插入和删除,选择正确的容器可以显著提高程序的性能和效率。
原创
发布博客 2024.07.23 ·
368 阅读 ·
3 点赞 ·
0 评论 ·
9 收藏

凸优化在机器人控制规划算法中的应用

凸优化问题的一个典型例子是线性回归问题,其中目标是最小化预测误差的平方和,这是一个凸优化问题,因为它的目标函数是凸的,约束条件通常是变量的非负性或者变量的取值范围。综上所述,凸优化在机器人控制规划算法中具有广泛的应用,从轨迹规划到避障运动规划,再到参数优化和实时控制,凸优化算法提供了一种有效的数学工具来提高机器人的性能和适应性。:由于凸优化问题具有全局最优解的特性,它在解决机器人导航中的复杂问题时具有很大的应用潜力,可以避免局部最优解的问题,提高导航的准确性和可靠性。那么这个函数就是凸函数。
原创
发布博客 2024.07.10 ·
577 阅读 ·
4 点赞 ·
0 评论 ·
5 收藏

ROS机器人操作系统面试相关的问题(八股文)

当Subscriber的Callback回调函数中进行费时的操作时,可以通过设置Publisher的queue_size等于1,设置Subscriber的queue_size(消息队列大小)等于1,以及设置Subscriber的buff_size(缓冲区大小)足够大来确保每次回调函数都处理当前时刻最新的一个消息。话题(Topic)是ROS消息传递机制中的一种基本通信方式。ROS的总体设计目标是提高机器人开发的软件复用率,开发具有独特的通信机制、丰富的开发工具、海量的应用功能、良好的生态系统集的工具。
原创
发布博客 2024.07.08 ·
2330 阅读 ·
11 点赞 ·
0 评论 ·
53 收藏

几百字通俗的解释(介绍)MDP马尔科夫决策过程(无公式版)

MDP,即马尔科夫决策过程(Markov Decision Process),是在不确定环境下做决策的一种数学框架,广泛应用于强化学习、机器人学、经济学和控制理论等领域。这个策略 a 可以通过多种算法求解,比如动态规划方法(包括价值迭代和策略迭代)、蒙特卡洛方法或时序差分学习(Temporal Difference Learning)等。MDP的目标是找到一个策略 a,这是一个从状态到动作的映射,或者是状态-动作对上的概率分布,使得代理的预期累积奖励最大化。
原创
发布博客 2024.07.05 ·
245 阅读 ·
2 点赞 ·
1 评论 ·
4 收藏

路径规划经典算法A*、D*、PRM、RRT以及DWA算法的优缺点总结

每种算法都有其特定的应用场景和限制。选择哪种算法取决于问题的具体需求、环境特性以及性能要求。
原创
发布博客 2024.07.02 ·
1889 阅读 ·
11 点赞 ·
0 评论 ·
23 收藏

分配问题(线性规划问题)-匈牙利算法介绍

每个线性规划问题都有一个对应的对偶问题,它们在数学上是相互关联的。对偶问题可以帮助我们更好地理解原问题,并且在某些情况下,对偶问题的解可以提供原问题的某些信息。线性规划问题是一种数学优化问题,它涉及在给定的线性约束条件下,找到线性目标函数的最大值或最小值。线性规划问题是一种优化问题,其目标是在一系列线性约束条件下找到一个最优解,使得某个线性目标函数达到最大值或最小值。:线性规划问题中涉及的变量称为决策变量,它们的值需要在满足约束条件的前提下进行选择。线性规划问题的目标是在所有可行解中找到最优解。
原创
发布博客 2024.07.02 ·
605 阅读 ·
5 点赞 ·
0 评论 ·
5 收藏

通俗的解释A*寻路

A*算法通过将实际成本g(n)和估计成本h(n)相加来估算从起点到终点的总成本,即f(n) = g(n) + h(n)。这个总成本f(n)是算法用来决定下一步走哪里的关键。:A*算法的关键在于启发式函数h(n)的选择。:A*算法的效率取决于启发式函数的质量以及如何管理开放和封闭列表。算法是一种在图中寻找最短路径的启发式搜索算法,它广泛应用于路径规划和图搜索问题。:一旦找到终点,算法会从终点开始回溯,通过每个节点的父节点链接来重建整个路径。算法的目标是找到从起点到终点的最短路径。
原创
发布博客 2024.07.01 ·
342 阅读 ·
3 点赞 ·
0 评论 ·
4 收藏

近邻算法示例代码,用于解决旅行商问题(TSP)

current_city = tour[-1] # 获取当前城市,从路径中的最后一个城市开始。visited[nearest_city] = True # 标记最近的未访问城市为已访问。tour.append(nearest_city) # 将最近的未访问城市添加到路径。nearest_city = None # 用于存储距离当前城市最近的未访问城市。tour = [0] # 起始城市为0,将其添加到路径中。# 遍历所有城市,找到距离当前城市最近的未访问城市。# 回到起始城市,完成路径。
原创
发布博客 2023.09.21 ·
381 阅读 ·
0 点赞 ·
1 评论 ·
2 收藏