数据仓库从0到1之数仓建模理论

从ODS层到ADS层,数据是越来越少的,数据分析都是以大量的数据为基础,对数据进行汇总聚合运算,抽丝剥茧,越往后数据的汇总层度越高,最后得到汇总的指标。

数仓分层原因

  1. 将复杂问题简化,将复杂的任务分解成多层来完成,每一层只处理简单的任务,方便定位问题;
  2. 减少重复开发,规范数据分层,通过中间层数据,能够减少极大的重复计算,增加一次计算结果的复用性;
  3. 隔离原始数据,不论是数据的异常还是数据的敏感性,使真实数据与统计数据解耦开;

数仓主体就是DWD(data warehouse detail:数据明细层),DWS(data warehouse service:服务数据层),DWT(data warehouse topic:数据主题层)。其中DWS,DWT两层都是汇总数据,从DWD来。

各分层简介

ODS

存放原始数据,原始数据保持原状。原始数据一类是日志,一类是业务数据。业务数据从mysql导入进来,本身就是结构化的,以具体分隔符分割,可以直接记载到对应数据库。但是日志数据就不行,是一行一行的字符串,需要将字符串解析成可以导入hive的数据格式。

即ODS层主要是对日志进行解析,要考虑解析成多少张表,按照什么逻辑去解析?定下逻辑后,解析的SQL怎么写?

业务数据主要就是怎么建模?所谓的建模就是明确要建哪些表,明确表中有哪些字段,表与表之间有什么样的关联?建模有一些指导思想,比如维度建模,关系建模,数仓一般采用维度建模。

DWD

明细层是数仓中关键的一层,是数仓的地基。明细数据从ODS层来,明细数据就是最原始最详细的数据,即一行数据指代依次业务行为,比如说order_info,一行数据就是依次下订单行为,该行数据就是明细数据。

该层需要构建维度模型,一般采用雪花模型。

维度建模一般按照以下四个步骤:

选择业务过程→声明粒度→确认维度→确认事实

  1. 选择业务过程(有几张事实表)

在业务系统中,挑选我们感兴趣(后面会分析的)的业务线,比如下单业务,支付业务,退款业务,物流业务,一条业务线对应一张事实表。

如果是中小公司,尽量把所有业务过程都选择。

如果是大公司(1000多张表),选择和需求相关的业务线

python023基于Python旅游景点推荐系统带vue前后端分离毕业源码案例设计 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值