骑士周游问题(马踏棋盘算法)

简述:

        最早由印度棋手在公元前200年的时候直观的提出。该问题用现代语言来描述的话,仍是在一个具体的图中寻找哈密尔顿路径的问题。图G中的哈密尔顿路径指的是经过图G中的每一个顶点,且只经过一次的一条轨迹。如果这条轨迹是一条闭合路径,即从起点出发不重复地遍历所有的点后仍能回到起始点,那么这条路径就成为就称为哈密尔顿路径。本问题是研究马在棋盘上的跳动,能否在每个棋盘的格子里只经过一次而遍历整个棋盘?

        起始点对于整个路径的影响是非常巨大的(比如 0, 0 点),可能要将所有可以走的路径全部测试一遍,粗略的估计需要走将近  8^{64} 次,时间复杂度非常大,我跑了很长时间没跑出来,所以我就放弃了,换了别的起点。

代码实现(C语言):

#include <stdio.h>
#include <stdlib.h>

int chess[8][8] = {0};  // 初始化棋盘
int step = 1;   // 记录步数

void recurse(int x, int y)
{
    if ( x-2 >= 0 && y-1 >= 0 && 0 == chess[x-2][y-1] )
    {
        step ++;
        chess[x-2][y-1] = step;
        recurse(x-2, y-1);
        chess[x-2][y-1] = 0;
        step 
  • 2
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值