第T2周:彩色图片分类

这篇文章详细描述了如何在Python环境中,使用PyTorch库构建一个基本的卷积神经网络(CNN),对CIFAR-10数据集进行图像分类。作者按照步骤设置了GPU环境,导入数据,归一化,构建CNN模型,编译并训练模型,最后展示了预测和模型评估的结果。
摘要由CSDN通过智能技术生成

>- **🍨 本文为[🔗365天深度学习训练营](小团体~第六波) 中的学习记录博客**
>- **🍖 原作者:[K同学啊 | 接辅导、项目定制](https://mtyjkh.blog.csdn.net/)**

🏡 我的环境:

  • 语言环境:Python3.7
  • 编译器:jupyter lab
  • 深度学习环境:Pytorch

一、前期工作

1. 设置GPU

如果使用的是CPU可以忽略这步

import tensorflow as tf
gpus = tf.config.list_physical_devices("GPU")

if gpus:
    gpu0 = gpus[0]
    tf.config.experimental.set_memory_growth(gpu0, True)
    tf.config.set_visible_devices([gpu0],"GPU")

2. 导入数据

import tensorflow as tf
from tensorflow.keras import datasets, layers, models
import matplotlib.pyplot as plt

(train_images, train_labels), (test_images, test_labels) = datasets.cifar10.load_data()

3. 归一化

# 将像素的值标准化至0到1的区间内。
train_images, test_images = train_images / 255.0, test_images / 255.0

train_images.shape,test_images.shape,train_labels.shape,test_labels.shape
((50000, 32, 32, 3), (10000, 32, 32, 3), (50000, 1), (10000, 1))

4. 可视化

class_names = ['airplane', 'automobile', 'bird', 'cat', 'deer','dog', 'frog', 'horse', 'ship', 'truck']

plt.figure(figsize=(20,10))
for i in range(20):
    plt.subplot(5,10,i+1)
    plt.xticks([])
    plt.yticks([])
    plt.grid(False)
    plt.imshow(train_images[i], cmap=plt.cm.binary)
    plt.xlabel(class_names[train_labels[i][0]])
plt.show()

二、构建CNN网络

model = models.Sequential([
    layers.Conv2D(32,(3,3),activation='relu',input_shape=(32,32,3)),
    layers.MaxPooling2D((2,2)),
    layers.Conv2D(64,(3,3),activation='relu'),
    layers.MaxPooling2D((2,2)),
    layers.Conv2D(64,(3,3),activation='relu'),
    layers.Dropout(0.3),
    
    layers.Flatten(),
    layers.Dense(64,activation='relu'),
    layers.Dense(10)
])

三、编译

model.compile(optimizer='adam',
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
              metrics=['accuracy'])

四、训练模型

history = model.fit(train_images, train_labels, epochs=10, 
                    validation_data=(test_images, test_labels))
Train on 50000 samples, validate on 10000 samples
Epoch 1/12
50000/50000 [==============================] - 91s 2ms/sample - loss: 1.5793 - accuracy: 0.4201 - val_loss: 1.2517 - val_accuracy: 0.5556
Epoch 2/12
50000/50000 [==============================] - 74s 1ms/sample - loss: 1.2183 - accuracy: 0.5663 - val_loss: 1.0955 - val_accuracy: 0.6137
Epoch 3/12
50000/50000 [==============================] - 82s 2ms/sample - loss: 1.0833 - accuracy: 0.6190 - val_loss: 1.0281 - val_accuracy: 0.6345
Epoch 4/12
50000/50000 [==============================] - 70s 1ms/sample - loss: 0.9939 - accuracy: 0.6496 - val_loss: 0.9479 - val_accuracy: 0.6675
Epoch 5/12
50000/50000 [==============================] - 71s 1ms/sample - loss: 0.9087 - accuracy: 0.6801 - val_loss: 0.8683 - val_accuracy: 0.6989
Epoch 6/12
50000/50000 [==============================] - 46s 928us/sample - loss: 0.8534 - accuracy: 0.6996 - val_loss: 0.8908 - val_accuracy: 0.6935
Epoch 7/12
50000/50000 [==============================] - 41s 823us/sample - loss: 0.8180 - accuracy: 0.7115 - val_loss: 0.8270 - val_accuracy: 0.7138
Epoch 8/12
50000/50000 [==============================] - 43s 858us/sample - loss: 0.7790 - accuracy: 0.7270 - val_loss: 0.8048 - val_accuracy: 0.7198
Epoch 9/12
50000/50000 [==============================] - 42s 842us/sample - loss: 0.7536 - accuracy: 0.7346 - val_loss: 0.8498 - val_accuracy: 0.7085
Epoch 10/12
50000/50000 [==============================] - 41s 827us/sample - loss: 0.7250 - accuracy: 0.7439 - val_loss: 0.7828 - val_accuracy: 0.7333
Epoch 11/12
50000/50000 [==============================] - 42s 835us/sample - loss: 0.7000 - accuracy: 0.7543 - val_loss: 0.8128 - val_accuracy: 0.7200
Epoch 12/12
50000/50000 [==============================] - 41s 829us/sample - loss: 0.6784 - accuracy: 0.7610 - val_loss: 0.7695 - val_accuracy: 0.7377

五、预测

通过模型进行预测得到的是每一个类别的概率,数字越大该图片为该类别的可能性越大

plt.imshow(test_images[1])

import numpy as np

pre = model.predict(test_images)
print(class_names[np.argmax(pre[1])])
ship

六、模型评估

import matplotlib.pyplot as plt

plt.plot(history.history['accuracy'], label='accuracy')
plt.plot(history.history['val_accuracy'], label = 'val_accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.ylim([0.5, 1])
plt.legend(loc='lower right')
plt.show()

test_loss, test_acc = model.evaluate(test_images,  test_labels, verbose=2)

print(test_loss)
print(test_acc)
0.7694846038818359
0.7377
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值