监督学习是指将把数据集都标记好后进行训练,然后训练学习出一种函数,然后通过这个数据集去测试新的数据。
监督学习一般有两种问题就是分类问题和回归问题。
看到一个很有意思的东西
人说1+1等于2
AI 记住1+1 =2,
人问 1+1 =?
AI说 1+1 =2
分类问题的意思是数据集是比较分散的,将多个输入变量与多个不同的类别建立映射关系,有多个变量,所以需要分割来分析问题。
举个例子,在吴恩达的机器学习中介绍了一个关于分类问题的例子
:目前已有的数据是肿瘤的恶性和良性,恶性打叉,良性画圈.通过一个横轴即可描述该事件.同样也可以二维建模,横轴代表肿瘤大小,纵轴代表受测者年龄,当在图上给顶一个点时,我们要预测的是该受测者的肿瘤是恶性还是良性.本质上我们要找一条线,它能最大可能的分开良性肿瘤点和恶性肿瘤点.
回归问题的意思是数据集是比较集中的,将多个输出变量在函数中建立映射关系。
在吴恩达课中有一个这样的例子
你的朋友要买房子,请你提供建议.目前已知的数据是若干房子的大小及其价格,据此我们可以简历一个二维平面图,横轴代表房子大小,纵轴代表每平价格.当我们已知朋友要购买的房子大小后,可以估算预测出其每平的价格