1.监督学习的学习笔记

监督学习是一种机器学习方法,涉及将标记好的数据用于训练模型。它主要分为两类问题:分类和回归。分类问题关注将输入变量映射到离散类别,如肿瘤的良性与恶性判断;回归问题则涉及连续的输出变量预测,如根据房屋大小预测价格。这两个概念在吴恩达的机器学习课程中有深入的阐述。
摘要由CSDN通过智能技术生成

监督学习是指将把数据集都标记好后进行训练,然后训练学习出一种函数,然后通过这个数据集去测试新的数据。

监督学习一般有两种问题就是分类问题和回归问题。

 

看到一个很有意思的东西

人说1+1等于2

AI 记住1+1 =2,

人问 1+1 =?

AI说 1+1 =2

分类问题的意思是数据集是比较分散的,将多个输入变量与多个不同的类别建立映射关系,有多个变量,所以需要分割来分析问题。

举个例子,在吴恩达的机器学习中介绍了一个关于分类问题的例子

:目前已有的数据是肿瘤的恶性和良性,恶性打叉,良性画圈.通过一个横轴即可描述该事件.同样也可以二维建模,横轴代表肿瘤大小,纵轴代表受测者年龄,当在图上给顶一个点时,我们要预测的是该受测者的肿瘤是恶性还是良性.本质上我们要找一条线,它能最大可能的分开良性肿瘤点和恶性肿瘤点.


 

 

回归问题的意思是数据集是比较集中的,将多个输出变量在函数中建立映射关系。

在吴恩达课中有一个这样的例子

你的朋友要买房子,请你提供建议.目前已知的数据是若干房子的大小及其价格,据此我们可以简历一个二维平面图,横轴代表房子大小,纵轴代表每平价格.当我们已知朋友要购买的房子大小后,可以估算预测出其每平的价格

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值