1.安装tensorboard:pip install tensorboard
2.导入: from torch.utils.tensorboard import SummaryWriter
3.实例化:writer = SummaryWriter("./logs") 括号中的为存放路径
1.add_scalar函数的使用
add_scalar(tag, scalar_value, global_step=None, walltime=None)
最常用的就是第一个add_scalar,使用该方法记录训练过程,一般只用前三个参数
tag (str) – Data identifier(你的可视化图像的名称叫什么)
scalar_value (float or string/blobname) – Value to save(你要可视化的值,就是Y轴上的值,一般就是损失值)
global_step (int) – Global step value to record(X轴)
示例1:可视化训练过程中的loss
writer.add_scalar("loss", loss, epoch)
示例2:可视化y=x函数
writer = SummaryWriter("logs")
for i in range (100):
writer.add_scalar('y=2x', 2*i, i)
writer.close()
打开指令:终端输入 tensorboard --logdir 文件夹名
#一定要为文件夹名,不能为文件名
eg:tensorboard --logdir /home/rui/PycharmProjects/pythonProject/exercise/logs
tensorboard --logdir=./result
#指定端口
tensorboard --logdir=./result --port=7007
注意:tensorboard将远程服务器上的ip在本地打开,指令要加--bind_all
tensorboard --logdir=./result_dir --port=1115 --bind_all
有时候服务器上的tensorboard打不开,可将文件下载到本地,用本地环境中的tensorboard打开