PyTorch中实现ResNet使用CIFAR-10数据集进行训练准确率90%

这是一段在 PyTorch 中实现 ResNet(残差网络)并使用 CIFAR-10 数据集进行训练和测试的代码。ResNet 是一种深度学习模型,由于其独特的“跳跃连接”设计,可以有效地解决深度神经网络中的梯度消失问题。CIFAR-10 是一个常用的图像分类数据集,包含10个类别的60000张32x32彩色图像。

下面我们会分步解析这段代码。

首先,我们看到导入了必要的 PyTorch 库和模块,包括神经网络(nn)、优化器(optim)、学习率调度器(lr_scheduler)、数据集(datasets)、数据转换(transforms)、数据加载器(DataLoader)等。

import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim.lr_scheduler import StepLR, ReduceLROnPlateau
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
import os
import torch.backends.cudnn as cudnn
import torch.nn.functional as F

之后定义了一个名为`progress_bar`的函数,这个函数用于在控制台上显示训练或测试的进度。

def progress_bar(current, total, msg=None):
    progress = current / total
    bar_length = 20  # Length of progress bar to display
    filled_length = int(round(bar_length * progress))
    bar = '=' * filled_length + '-' * (bar_length - filled_length)

    if msg:
        print(f'\r[{bar}] {progress * 100:.1f}% {msg}', end='')
    else:
        print(f'\r[{bar}] {progress * 100:.1f}%', end='')

    if current == total - 1:
        print()

接下来的部分定义了 ResNet 模型。其中`conv3x3`函数用于创建一个3x3的卷积层,`BasicBlock`类代表了 ResNet 中的基础块,`ResNet`类则是整个网络的架构。特别地,`ResNet18`函数返回一个具有18层的 ResNet 模型(包括卷积层和全连接层)。

# Model definition
def conv3x3(in_planes, out_planes, stride=1):
    return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False)

class BasicBlock(nn.Module):
    expansion = 1

    def __init__(self, in_planes, planes, stride=1):
        super(BasicBlock, self).__init__()
        self.conv1 = conv3x3(in_planes, planes, stride)
        self.bn1 = nn.BatchNorm2d(planes)
        self.conv2 = conv3x3(planes, planes)
        self.bn2 = nn.BatchNorm2d(planes)

        self.shortcut = nn.Sequential()
        if stride != 1 or in_planes != self.expansion*planes:
            self.shortcut = nn.Sequential(
                nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(self.expansion*planes)
            )

    def forward(self, x):
        out = torch.relu(self.bn1(self.conv1(x)))
        out = self.bn2(self.conv2(out))
        out += self.shortcut(x)
        out = torch.relu(out)
        return out

class ResNet(nn.Module):
    def __init__(self, block, num_blocks, num_classes=10):
        super(ResNet, self).__init__()
        self.in_planes = 64

        self.conv1 = conv3x3(3,64)
        self.bn1 = nn.BatchNorm2d(64)
        self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1)
        self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2)
        self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2)
        self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2)
        self.linear = nn.Linear(512*block.expansion, num_classes)

    def _make_layer(self, block, planes, num_blocks, stride):
        strides = [stride] + [1]*(num_blocks-1)
        layers = []
        for stride in strides:
            layers.append(block(self.in_planes, planes, stride))
            self.in_planes = planes * block.expansion
        return nn.Sequential(*layers)

    def forward(self, x):
        out = torch.relu(self.bn1(self.conv1(x)))
        out = self.layer1(out)
        out = self.layer2(out)
        out = self.layer3(out)
        out = self.layer4(out)
        out = F.avg_pool2d(out, 4)
        out = out.view(out.size(0), -1)
        out = self.linear(out)
        return out

def ResNet18():
    return ResNet(BasicBlock, [2,2,2,2])

然后是`train`和`test`函数,分别用于进行模型训练和测试。在`train`函数中,模型在每个 epoch 中对训练数据进行一次完整的前向传播和反向传播。同时,通过调用`progress_bar`函数,可以实时看到训练过程中的损失和准确率。在`test`函数中,模型在每个 epoch 结束后对测试数据进行一次前向传播,以验证模型的泛化能力。

# Training
def train(epoch):
    print('\nEpoch: %d' % epoch)
    model.train()
    train_loss = 0
    correct = 0
    total = 0
    for batch_idx, (inputs, targets) in enumerate(trainloader):
        inputs, targets = inputs.to(device), targets.to(device)
        optimizer.zero_grad()
        outputs = model(inputs)
        loss = criterion(outputs, targets)
        loss.backward()
        optimizer.step()

        train_loss += loss.item()
        _, predicted = outputs.max(1)
        total += targets.size(0)
        correct += predicted.eq(targets).sum().item()

        progress_bar(batch_idx, len(trainloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)'
            % (train_loss/(batch_idx+1), 100.*correct/total, correct, total))
    scheduler.step()

# Testing
def test(epoch):
    global best_acc
    model.eval()
    test_loss = 0
    correct = 0
    total = 0
    with torch.no_grad():
        for batch_idx, (inputs, targets) in enumerate(testloader):
            inputs, targets = inputs.to(device), targets.to(device)
            outputs = model(inputs)
            loss = criterion(outputs, targets)

            test_loss += loss.item()
            _, predicted = outputs.max(1)
            total += targets.size(0)
            correct += predicted.eq(targets).sum().item()

            progress_bar(batch_idx, len(testloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)'
                % (test_loss/(batch_idx+1), 100.*correct/total, correct, total))

    # Save checkpoint.
    acc = 100.*correct/total
    if acc > best_acc:
        print('Saving..')
        state = {
            'model': model.state_dict(),
            'acc': acc,
            'epoch': epoch,
        }
        if not os.path.isdir('checkpoint'):
            os.mkdir('checkpoint')
        torch.save(state, './checkpoint/ckpt.pth')
        best_acc = acc

最后,我们看到在主函数中,首先进行了一些预处理操作,包括定义数据的转换方法、加载训练和测试数据集,并将数据封装进 DataLoader 中。接着,创建了一个 ResNet18 模型,并将其转移到了 GPU(如果可用)。然后,定义了损失函数(交叉熵损失)和优化器(随机梯度下降),并设置了学习率调度器,使得在每50个 epoch 后,学习率乘以 0.1。最后,开始进行200个 epoch 的训练和测试,每个 epoch 结束后,如果在测试集上的准确率达到新的最高值,就保存当前的模型参数。

if __name__ == '__main__':
    best_acc = 0  # Start with 0 accuracy

    transform_train = transforms.Compose([
        transforms.RandomCrop(32, padding=4),
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
        transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
    ])

    transform_test = transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
    ])

    trainset = datasets.CIFAR10(root='./data', train=True, download=True, transform=transform_train)
    trainloader = DataLoader(trainset, batch_size=128, shuffle=True, num_workers=2)

    testset = datasets.CIFAR10(root='./data', train=False, download=True, transform=transform_test)
    testloader = DataLoader(testset, batch_size=100, shuffle=False, num_workers=2)

    # Instantiate model
    device = 'cuda' if torch.cuda.is_available() else 'cpu'
    model = ResNet18().to(device)
    if device == 'cuda':
        model = torch.nn.DataParallel(model)
        cudnn.benchmark = True

    # Loss function and optimizer
    criterion = nn.CrossEntropyLoss()
    optimizer = optim.SGD(model.parameters(), lr=0.1, momentum=0.9, weight_decay=5e-4)
    scheduler = StepLR(optimizer, step_size=50, gamma=0.1)



    start_epoch = 0
    # Run training and testing
    for epoch in range(start_epoch, start_epoch+200):
        train(epoch)
        test(epoch)

通过这段代码,我们可以看到使用 PyTorch 实现、训练和测试深度学习模型的基本步骤,包括定义模型架构、设置损失函数和优化器、进行前向传播和反向传播、调整学习率、保存和加载模等。

下面是我的运行过程。

 在此,我想推荐大家加入我们的神经网络交流学习群。群号是732818397。在这个群里,我们可以一起学习和探讨关于神经网络的各种问题和挑战。无论你是初学者还是有经验的专业人士,我们都欢迎你的加入。希望我们能在学习和交流的过程中共同进步,共同提高。期待在群里遇见你。

  • 5
    点赞
  • 29
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
### 回答1: PyTorchResNet-18在CIFAR-10数据集的预训练模型是指在经过大规模的图像数据集进行训练后的ResNet-18模型,以便在CIFAR-10数据集进行更好的图像分类任务。 ResNet-18是一个由18个卷积层和全连接层组成的深度神经网络。预训练模型是指在大规模数据上进行训练得到的模型参数,因此具有更好的泛化性能。CIFAR-10是一个包含10个类别的图像分类数据集,用于在小尺寸图像上进行模型训练和评估。 通过使用训练ResNet-18模型,在CIFAR-10数据集进行图像分类任务时,我们可以利用预训练模型的权重参数来加快训练过程并提高准确率。预训练模型的好处是可以从大规模数据学习到更多的特征表示,这些特征表示通常具有更高的鉴别性,因此可以更好地捕捉图像的关键特征。 对于CIFAR-10数据集,预训练模型可以有效地缩短训练时间并提高模型的收敛速度,因为在预训练模型已经包含了对图像的一些共享特征的学习。通过在CIFAR-10数据集进行微调,即在预训练模型的基础上进行进一步的训练,可以逐步调整模型参数以适应CIFAR-10数据集的特定要求,从而提高最终的图像分类性能。 总而言之,PyTorchResNet-18在CIFAR-10的预训练模型是通过在大规模数据上进行训练,在CIFAR-10数据集进行图像分类任务时使用的预训练模型。这个预训练模型可以帮助提高训练速度和分类准确率,并且在模型训练和微调时起到了重要作用。 ### 回答2: PyTorchResNet-18是一种在CIFAR-10数据集进行训练的深度神经网络模型。CIFAR-10是一个包含10个类别的图像分类数据集,包括飞机、汽车、鸟、猫、鹿、狗、青蛙、马、船和卡车。 ResNet-18是指由18个卷积层和全连接层组成的深度残差网络。该网络的设计思想是通过残差连接(即跳过连接)来解决深度网络的梯度消失问题,使得网络具有更好的训练效果。这意味着在每个卷积层之后,输入信号可以通过两条路径传递:一条直接连接到后续层,另一条通过卷积操作后再进行连接。这种设计可以使网络更加容易学习输入和输出之间的映射关系。 在CIFAR-10上预训练ResNet-18模型具有多个优点。首先,这个模型具有较小的参数量和计算复杂度,适合在资源有限的环境下使用。其次,该模型经过在CIFAR-10数据集上的预训练,可以直接用于图像分类任务。通过在CIFAR-10进行训练,模型可以学习到一般的图像特征和模式,使其能够更好地泛化到其他类似的图像分类任务。 通过使用训练ResNet-18模型,我们可以利用其已经学到的特征和知识,节省训练时间,并为我们的具体图像分类任务提供一个良好的起点。此外,该模型可以通过微调(fine-tuning)进一步优化,以适应特定任务的需求。 综上所述,PyTorchResNet-18在CIFAR-10的预训练模型是一个有价值的工具,可以用于图像分类任务,具有较小的参数量和计算复杂度,预先学习了一般的图像特征和模式,并可以通过微调进一步适应特定任务的需求。 ### 回答3: PyTorch的预训练模型ResNet-18在CIFAR-10数据集上表现出色。首先,CIFAR-10是一个包含10个不同类别的图像数据集,每个类别有6000个图像,共计60000个图像。ResNet-18是一个基于深度残差网络的模型,它具有18个卷积层和全连接层。该模型在ImageNet数据集进行了预训练,其包含了1000个类别的图像。 当我们将预训练ResNet-18模型应用于CIFAR-10数据集时,可以得到很好的结果。因为CIFAR-10数据集的图像尺寸较小(32x32),相对于ImageNet数据集的图像(224x224),所以ResNet-18模型在CIFAR-10上的训练速度更快。此外,ResNet-18模型通过残差连接解决了深度网络的梯度消失问题,这使得它在CIFAR-10数据集上的表现也非常稳定。 通过使用训练模型,我们可以通过迁移学习的方式节省训练时间。我们可以先将ResNet-18加载到内存,然后只需针对CIFAR-10数据集的最后一层或几层进行微调即可。这样可以有效地提高模型在CIFAR-10上的性能。 总之,PyTorch的预训练模型ResNet-18在CIFAR-10数据集上表现优秀。它通过残差连接解决了深度网络的梯度消失问题,具有较快的训练速度和较好的稳定性。使用训练模型可以节省训练时间,并通过微调模型的方式进一步提高性能。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值