【机器学习入门】决策树算法(一):ID3(Iterative Dichotomiser 3)算法

决策树是一种基于概率分析的决策分析方法,通过构建树形结构来评估项目风险。ID3算法由RossQuinlan提出,用于生成决策树,它选择信息增益最高的特征进行分裂。熵是衡量样本集合不纯度的指标,信息增益则是评估分裂效果的度量。然而,ID3算法易受过多特征和噪声影响,可能导致过拟合。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

决策树:

决策树(Decision Tree)是在已知各种情况发生概率的基础上,通过构成决策树来求取净现值的期望值大于等于零的概率,评价项目风险,判断其可行性的决策分析方法,是直观运用概率分析的一种图解法。

决策树通过把数据样本分配到某个叶子节点来确定数据集中样本所属的分类。

ID3(Iterative Dichotomiser 3)算法

提出者:

ID3(Iterative Dichotomiser 3)算法由罗斯·昆兰(Ross Quinlan)提出,用来从数据集中生成决策树。

原理:

ID3算法是在每个节点处选取能获得最高信息增益的分支属性进行分裂。

在说信息增益之前࿰

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值