C语言经典算法之ID3(Iterative Dichotomiser 3)算法

目录

前言

A.建议

B.简介

一 代码实现

A.数据结构定义

B.计算信息熵与信息增益

C.选择最优特征作为根节点

D.递归构建决策树

二 时空复杂度

A.时间复杂度

B.空间复杂度

C.总结

三 优缺点

A.优点:

B.缺点:

四 现实中的应用


前言

A.建议

1.学习算法最重要的是理解算法的每一步,而不是记住算法。

2.建议读者学习算法的时候,自己手动一步一步地运行算法。

B.简介

在C语言中实现ID3算法(Iterative Dichotomiser 3)是一个过程,它涉及构建决策树模型,其中关键步骤包括信息增益的计算、选择最优特征作为划分属性以及递归地构建子树。

一 代码实现

以下是一个简化的概念性框架来说明如何在C语言中实现ID3算法的核心部分:

A.数据结构定义

首先,我们需要定义能够存储训练数据和决策树节点的数据结构。

typedef enum { LABEL_A, LABEL_B, ... } LabelType; // 根据实际情况定义类别标签类型

// 定义一个训练样本结构体
typedef struct {
    int feature_values[MAX_FEATURES]; // 特征值数组
    LabelType label;                 // 类别标签
} TrainingExample;

// 定义决策树节点结构体
typedef struct Node {
    int feature_index;            // 划分所依据特征的索引
    float split_value;             // 分割点值(仅对离散型特征有意义)
    struct Node* left_child;       // 左子节点指针
    struct Node* right_child;      // 右子节点指针
    LabelType default_label;       // 如果是叶节点,则存储该节点预测的类别
} DecisionTreeNode;

B.计算信息熵与信息增益

计算信息熵和信息增益是ID3算法的关键步骤。信息熵用来衡量数据集纯度,信息增益则表示通过某个特征划分后纯度提升的程度。

// 计算给定数据集的信息熵
float calculate_entropy(Dataset dataset) {
    float entropy = 0.0;
    // 计算每个类别的频率并应用熵公式
    // ...
    return entropy;
}

// 计算给定特征A对于数据集S的信息增益
float calculate_information_gain(Dataset dataset, int feature_index) {
    float total_entropy = calculate_entropy(dataset);
    
    // 计算基于特征A的不同取值划分后的子集熵
    // 并累加它们的权重乘以熵得到条件熵
    float weighted_conditional_entropy = 0.0;
    // ...
    
    // 信息增益 = 总熵 - 条件熵
    return total_entropy - weighted_conditional_entropy;
}

C.选择最优特征作为根节点

遍历所有特征,并计算每个特征对应的信息增益,选择信息增益最大的特征作为决策树的根节点。

int find_best_feature(Dataset dataset) {
    float max_info_gain = 0.0;
    int best_feature_index = -1;

    for (int i = 0; i < dataset.num_features; ++i) {
        float info_gain = calculate_information_gain(dataset, i);
        if (info_gain > max_info_gain) {
            max_info_gain = info_gain;
            best_feature_index = i;
        }
    }

    return best_feature_index;
}

D.递归构建决策树

根据最优特征创建子节点,并递归地在子数据集上重复构建决策树的过程。

DecisionTreeNode* build_tree(Dataset dataset) {
    if (/* 判断停止条件,如数据集为空或所有样本属于同一类别 */) {
        // 创建叶节点并返回
        DecisionTreeNode* leaf_node = (DecisionTreeNode*)malloc(sizeof(DecisionTreeNode));
        leaf_node->default_label = /* 计算该节点的类别 */;
        leaf_node->left_child = NULL;
        leaf_node->right_child = NULL;
        return leaf_node;
    }

    // 找到最佳特征
    int best_feature_index = find_best_feature(dataset);

    // 初始化新的决策树节点
    DecisionTreeNode* node = (DecisionTreeNode*)malloc(sizeof(DecisionTreeNode));
    node->feature_index = best_feature_index;

    // 对于离散型特征,根据特征值划分数据集
    // 对于连续型特征,可以考虑二分法或其他分割策略
    Dataset left_set, right_set; // 初始化左右子数据集
    
    // ...省略了划分数据集的具体代码...

    // 递归构建子树
    node->left_child = build_tree(left_set);
    node->right_child = build_tree(right_set);

    return node;
}

上述伪代码展示了在C语言中实现ID3算法的基本思路。实际编写时需要填充具体的细节,比如如何处理不同类型的特征(离散型与连续型)、如何准确计算熵和信息增益、如何有效划分数据集等。同时要注意内存管理,确保动态分配和释放内存。

二 时空复杂度

A.时间复杂度

ID3的时间复杂度主要体现在两个方面:

  1. 计算信息增益:对于每个特征,需要遍历整个训练集以统计各类别出现的频率来计算信息熵和信息增益。假设数据集中有m个样本和n个特征,每个特征可能取值的数量为k,那么计算单个特征的信息增益的时间复杂度大致为 O(m * n)

  2. 构建决策树:在每一轮迭代中,算法选择信息增益最大的特征作为划分标准,并对数据集进行分割。由于每次分裂都会递归地处理子集,直到满足停止条件(例如所有样本属于同一类别或者没有剩余特征可以分割)。因此,最坏情况下,如果每次都恰好将数据集二等分,则构建整棵树的时间复杂度接近于 O(m * n * log(m)),这里的log(m)来自于每次将数据规模减半的分割过程。

B.空间复杂度

  1. 存储数据集:需要存储训练集中的m个样本,每个样本包含n个特征以及一个标签,所以空间复杂度为 O(m * n)

  2. 存储决策树:决策树的空间消耗取决于树的高度和节点数。在最坏情况下,当每个特征都能完美地将数据划分为两个相等的部分时,决策树将会是一个完全二叉树,此时空间复杂度为 O(m)。但实际上,决策树通常不会这么深,实际的空间复杂度会小于 O(m),但可能会随着特征数量和样本量的增长而增长。

C.总结

总的来说,ID3算法的时间复杂度较高且不稳定性较大,它倾向于偏向于具有更多可选值的特征,而且不能直接处理连续性特征。此外,ID3算法容易过拟合,特别是在面对大数据集或具有许多无关特征的数据集时。这些问题后来在C4.5算法中通过引入信息增益率和剪枝策略得到了改进。

三 优缺点

A.优点:

  1. 理论清晰:ID3算法直观易懂,以信息论为基础,通过信息增益来选择最优划分属性,易于理解。

  2. 方法简单:算法实现相对简单,不需要复杂的数学知识,适合教学和初步的数据挖掘应用。

  3. 高效快速:对于小规模数据集和具有高信息增益属性的问题,ID3能较快地构建出决策树模型,并且查询速度快。

  4. 自上而下递归生成决策树:ID3采用自顶向下的贪婪策略,每次选择当前最优分割属性,逐步细化决策边界,简化了模型构建过程。

  5. 可读性强:生成的决策树结果具有良好的可解释性,能够方便非技术人员理解和使用。

B.缺点:

  1. 处理连续值特征的能力有限:ID3算法原生仅适用于离散型数据,对连续数值型数据处理起来较为困难,需要先进行离散化处理。

  2. 偏向于选择拥有更多取值的特征:信息增益的选择标准可能导致偏好那些拥有较多可能取值的属性,而不是真正具有分类能力的属性,从而导致过拟合或欠拟合。

  3. 无法处理缺失值:ID3算法没有内建处理缺失值的方法,对于存在大量缺失值的数据集表现不佳。

  4. 不适用于大规模数据集:由于ID3算法的时间复杂度较高,随着样本数量和特征数量的增加,计算量会显著增大,不适合大型数据集训练。

  5. 容易过拟合:由于采用了贪婪策略,在每一步都选择局部最优解,但不保证全局最优,因此可能会产生过于复杂的决策树,即过拟合问题。

  6. 未考虑树的深度限制:ID3算法没有内置剪枝机制,容易生成深度较大、过于细致的决策树,影响泛化能力。

四 现实中的应用

  1. 信用评分与贷款决策

    • 在银行和金融机构中,ID3算法可以用来构建决策树模型,帮助评估个人或企业的信用风险,根据客户的属性(如收入水平、工作稳定性、历史还款记录等)决定是否批准贷款申请以及设定合理的利率。
  2. 市场营销策略制定

    • 根据客户的行为数据、购买历史、年龄、性别、地域等特征,通过ID3算法建立分类模型来细分市场,预测不同用户群体对特定产品或服务的响应,从而制定个性化的营销策略。
  3. 医疗诊断系统

    • ID3算法可用于医学诊断决策支持系统中,基于患者的症状、生理指标和其他临床信息,快速推断可能的疾病诊断结果。
  4. 电子商务推荐系统

    • 网络购物平台可利用ID3算法分析用户的浏览、搜索、购买行为,构建用户兴趣模型,实现商品的智能推荐。
  5. 教育领域的学生分类与成绩预测

    • 依据学生的学科成绩、出勤情况、课外活动参与度等数据,构建决策树对学生进行分类,预测其毕业后的升学或就业趋势,或者预测未来考试成绩。
  6. 农业病虫害预测

    • 根据气象条件、土壤类型、作物生长阶段等环境及生物信息,使用ID3算法预测可能出现的农作物病虫害,指导农民采取预防措施。
  7. 工业故障诊断

    • 在工业生产过程中,ID3算法可用于设备故障诊断,通过对运行参数、维护记录等数据的分析,提前预警或定位设备可能出现的问题。
  8. 人力资源管理

    • 利用员工的基本信息、工作表现、培训经历等因素,构建决策树模型以预测员工绩效、流失率或选拔合适的候选人。
  • 27
    点赞
  • 25
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

JJJ69

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值