动态规划DP之背包问题3---多重背包问题

目录

DP分析:

优化:

 二进制优化

例题:


        01背包是每个物品只有一个,完全背包问题是每个物品有无限个。

        那么多重背包问题就是 每个物品有有限个

有 N 种物品和一个容量是 V 的背包。

第 i 种物品最多有 si 件,每件体积是 vi,价值是 wi。

求解将哪些物品装入背包,可使物品体积总和不超过背包容量,且价值总和最大。
输出最大价值。

DP分析:

        和完全背包问题很像,暴力算法都是多加一层循环,循环物品的个数。O(n^3)

动态规划DP之背包问题2---完全背包问题-CSDN博客

         实现代码:

for(int i=1;i<=n;i++){
    for(int j=1;j<=V;j++){
        f[i][j] = f[i-1][j];
        for(int k=0;k<=s[i]&&k*v[i]<=j;k++)
            f[i][j] = Math.max(f[i][j],f[i-1][j-k*v[i]]+k*w[i]);                    
    }
}

优化:

        不能采用完全背包的优化方式。动态规划DP之背包问题2---完全背包问题-CSDN博客 

        因为:

f[i,j]=max(f[i-1,j],f[i-1,j-v]+w,...\ f[i-1,j-sv]+sw)      ①

f[i,j-v]=max(\ f[i-1,j-v],f[i-1,j-2v]+w,...\ f[i-1,j-sv]\\+(s-1)w,\ f[i-1,j-(s+1)v]+sw)      ②

        因为有物品数量的限制,当选到第 s 个第i个物品时(最后一个物品),体积还为超过 j-v,所以在②的时候,可以多一个选项,多了一个 f[i-1,j-(s+1)v]+sw,而max是不能减少一个获取到最大值的。而在完全背包问题中,没有这个困扰,因此可以直接选到最多的物品数。

 二进制优化

        和快速幂的思路方法很像。快速幂(求解原理+例题)-CSDN博客

    假如:物品 i 的数量为 s_i=1023

  • 暴力做法就是从 1 枚举到 1023 。
  • 使用二进制优化,我们只需要枚举 (int)(log_2s_i)+1 个数:1,2,4,8,16,...512,就可以组合出 [0,1023] 中的任意一个整数。(相当于二进制表示转化为十进制) 

一般性下,如和求出 s_i\ log下需要的数是哪些:

   2^0,\ 2^1,\ 2^2,\ 2^3,\ ...2^k, \ c\ \ (c=s_i-2^0-2^1-...2^k,\ c<2^{k+1})

   从 2^0 到 2^k 可以组合成 [0,2^{k+1}-1] 之间的任何一个数,加上 c 后可以组成 [c,2^{k+1}-1+c],其中 2^{k+1}-1+c = s_i 。

   如何保证第一段 [0,2^{k+1}-1] 与 [c,2^{k+1}-1+c] 之间没有空隙,即 2^{k+1}-1 是否大于 c

        因为 c 的取值 c<2^{k+1} 保证了

         2^0+2^1+2^2+2^3+ ...2^k+ 2^{k+1} >s_i\\2^0+2^1+2^2+2^3+ ...2^k\ \ \ \ \ \ \ \ \ \leqslant s_i\\ 2^0+2^1+2^2+2^3+ ...2^k+ \ c \ \ \ =s_i

        如果 c>=2^{k+1},那么就会取 2^{k+1} ,不是 c 了。

因此,我们将 s_i\rightarrow logs_i,然后针对分开后的所有物品使用01背包处理方式。时间复杂度降为O(n^2logs)

优化代码:

        转换为01背包问题,将 s_i 拆后的所有数,分别作为一种物品的数量。

for(int i=1;i<=n;i++){
    str = in.readLine().split(" ");
    int vi = Integer.parseInt(str[0]); // 物品i的体积
    int wi = Integer.parseInt(str[1]); // 物品i的价值
    int si = Integer.parseInt(str[2]); // 物品i的数量
            
    // 直接将该物品数目拆分成多个,但是拆分完后的物品数目可以组合成si中的任何一个数目
    int k = 1; // 从1开始划分,每次乘23
    while(si>=k){ //满足c<2^(k+1) ,即是s大于k,才能划分k个物品出去
        v[cnt] = vi*k; // 个数*体积,作为新一个物品
        w[cnt] = wi*k;
        si -= k; // 减去划分的
        k *= 2; 
        cnt++;
    }
    if(si!=0){ // 最后剩下的物品,即c
        v[cnt] = si*vi;
        w[cnt] = si*wi;
        cnt++;
    }
}
n = cnt;

例题:

有 N 种物品和一个容量是 V 的背包。

第 i 种物品最多有 si 件,每件体积是 vi,价值是 wi。

求解将哪些物品装入背包,可使物品体积总和不超过背包容量,且价值总和最大。
输出最大价值。

输入格式

第一行两个整数,N,V,用空格隔开,分别表示物品种数和背包容积。

接下来有 N 行,每行三个整数 vi,wi,si,用空格隔开,分别表示第 i 种物品的体积、价值和数量。

输出格式

输出一个整数,表示最大价值。

数据范围

0<N≤1000
0<V≤2000
0<vi,wi,si≤2000

提示:

本题考查多重背包的二进制优化方法。

输入样例

4 5
1 2 3
2 4 1
3 4 3
4 5 2

输出样例:

10
import java.io.*;
import java.util.*;
 
class Main{
    static int N = 20010;
    static int n,V;
    static int[] v = new int[N]; // 体积
    static int[] w = new int[N]; // 价值
    static int[] s = new int[N]; // 个数
    static int[] f = new int[N]; // 二维会超内存
    public static void main(String[] args) throws IOException{
        BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
        String[] str = in.readLine().split(" ");
        n = Integer.parseInt(str[0]);
        V = Integer.parseInt(str[1]);
        
        int cnt = 1;
        for(int i=1;i<=n;i++){
            str = in.readLine().split(" ");
            int vi = Integer.parseInt(str[0]);
            int wi = Integer.parseInt(str[1]);
            int si = Integer.parseInt(str[2]);
            
            // 直接将该物品数目拆分成多个,但是拆分完后的物品数目可以组合成si中的任何一个数目
            int k = 1;
            while(si>=k){ //满足c<2^(k+1) ,则是s大于k,才能划分k个物品出去
                v[cnt] = vi*k;
                w[cnt] = wi*k;
                si -= k;
                k *= 2;
                cnt++;
            }
            if(si!=0){ // 最后剩下的物品
                v[cnt] = si*vi;
                w[cnt] = si*wi;
                cnt++;
            }
        }
        n = cnt;
        
        // 转化为01背包问题
        for(int i=1;i<n;i++)
            for(int j=V;j>=v[i];j--)
                f[j] = Math.max(f[j],f[j-v[i]]+w[i]);                      

        System.out.println(f[V]); 
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值