【数据分享】1942-2024年我国观测站点的逐日气象指标(来源于NOAA\12个指标\免费获取)

气象数据是在各项研究中都经常使用的数据。气象指标包括气温、风速、降水、能见度等指标。之前我们分享过1929-2024年NOAA全球站点逐日的12个气象指标数据集合(可查看之前的推文查看数据详情),数据由美国国家海洋和大气管理局(NOAA)下设的国家环境信息中心(NCEI)发布!

相较全球范围的气象指标,大家更经常使用国内范围的数据,为方便大家直接使用,我们从全球站点中提取出国内站点,得到本次分享的数据——1942-2024年我国观测站点的逐日气象指标!

该数据集汇总了1942年至今的全国约400个站点的逐日的气象指标。该数据的具体信息包括:

1.时间方面:该数据集的起始年份是1942年,数据持续更新,最新的数据是2024年3月11号的数据。

2.站点方面:早些年份的站点量较少,比如1942年全国只有1个站点,到了最近的年份,站点量就比较多了,2024年全国范围的观察站点一共有395个。每个站点的数据保持为一个csv文件!

3.对于每个站点的csv文件,文件中包括了该站点的基本信息以及12个气象指标的数值。

csv文件中每一列数据的解释如下表:

我们对原始数据文件的命名进行了调整,改为“站点id_站点位置_国家_(经度,纬度)”的形式,从而实现对国内站点数据的筛选。

大家可以自己去NCEI官网下载全球范围的原始csv格式的数据,也可以在本公众号回复关键词195免费获取我们重命名后的全国站点的数据!无需转发文章,直接获取!以下为数据的详细介绍:

01 数据来源

原始全球站点数据来源于美国国家海洋和大气管理局(NOAA)下设的国家环境信息中心(NCEI),网址为:https://www.ncei.noaa.gov/data/global-summary-of-the-day/archive/,包括了1929—2024年的气象数据,大家可以自己去该网站下载原始数据和获悉更多有关数据详情的介绍。

02 数据命名方式

“站点id_站点位置_CHINA_(经度,纬度)”的形式,以方便大家筛选站点。

例如:50434099999_TULIHE_CHINA_(121.7,50.45).csv

  • 站点编号:50434099999
  • 站点名称:TULIHE
  • 所属国家:CHINA(中国)
  • 站点经度:121.7(东经为正数,西经为负数)
  • 站点纬度:50.45(北纬为正数,南纬为负数)
  • 数据格式:.csv

03 数据获取

### 使用R语言提取气象数据(降水和温度) #### 安装必要的包 为了有效地处理和提取气象数据,建议先安装并加载几个常用的R包: ```r install.packages(c("ncdf4", "rgdal", "sp", "dplyr")) library(ncdf4) library(rgdal) library(sp) library(dplyr) ``` 这些工具能够帮助读取不同格式的数据文件,并支持地理空间运算。 #### 获取NetCDF格式的气象数据集 许多公开可用的气候数据库都采用NetCDF格式存储时间序列观测资料。可以从诸如NOAA这样的机构下载所需的历史或实时更新的数据集合[^4]。 假设已经获得了一个包含多逐日气温与降水量记录的`.nc`文件,则可以通过如下方式打开它: ```r # 替换为实际路径下的.nc文件名 file_path <- "./data/precipitation_temperature_data.nc" dataset <- nc_open(file_path) print(dataset) # 查看该netcdf对象基本信息 ``` #### 提取出感兴趣的变量 通过查看上述打印出来的信息,找到代表每日平均地面空气湿度(`temp`)及累积降雨量(`prcp`)对应的内部名称后,就可以进一步定位到具体的时间维度和其他辅助属性上去了: ```r temperature_varname <- "tas" # 假设这是温度变量的名字 precipitation_varname <- "pr" time_dim_id <- which(names(dataset$dim)=="time") timeseries_temp <- ncvar_get(dataset, temperature_varname)[,, time_dim_id] timeseries_precip <- ncvar_get(dataset, precipitation_varname)[,, time_dim_id] close(dataset) # 关闭连接以释放资源 ``` 这里需要注意的是不同的数据集中对于各个物理量的具体命名可能会有所差异,请务必参照官方文档确认无误后再执行相应命令。 #### 数据预览与初步清洗 此时得到的结果是以多维数组形式存在的原始数值矩阵;通常还需要转换成更易于理解的形式——比如按日期排列的一列向量或者表格结构化表达式: ```r dates <- as.Date(strptime(as.character(times), format="%Y-%m-%dT%H:%M:%S")) weather_df <- data.frame( Date=rep(dates), Temperature_Celsius=c(timeseries_temp)), Precipitation_mm_per_day=c(timeseries_precip)) head(weather_df) # 展示前几条记录供快速浏览 summary(weather_df) # 统计描述性统计指标 ``` 完成这一步骤之后便可以获得一份清晰明了的日度级别天气状况概览表单了!
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值