【数据分享】1901-2023年1km分辨率逐月最高气温栅格数据(免费获取/全国/分省)

气温数据是我们最常用的气象指标之一,之前我们给大家分享过来源于国家青藏高原科学数据中心提供的1901-2023年1km分辨率逐月平均气温栅格数据(可查看之前的文章获悉详情)!

本次我们分享的同样是来自国家青藏高原科学数据中心的高精度气温栅格数据——1901-2023年1km分辨率的逐月最高气温栅格数据!

我们从官方网站下载的逐月最高气温数据的单位是0.1 ℃,数据格式为NETCDF,即.nc格式。为方便大家使用,我们对原始数据进行了一些处理,单位转化为摄氏度(℃),格式转为栅格(.tif)格式。此外,全国范围的数据非常大,不方便使用,我们将全国数据划分为了分省份的数据!需要重点说明的是:这儿的逐月最高气温是当月每日最高气温的月平均值!

大家在公众号回复关键词 317 可免费获取全国任意一个省份的1901-2023年1km分辨率逐月最高气温数据!

如果想要全国范围的最高气温栅格数据,请在公众号回复关键词 318按转发要求获取!以下为数据的详细介绍:

01 数据预览

全国范围的数据

首先我们先来看一下全国范围的数据,我们会提供三种数据:

①原始nc格式的数据

②空间范围大于中国国界的tif格式数据

我们以2023年7月的全国最高气温为例来预览一下,由原始.nc格式数据转为的.tif格式数据的范围为矩形范围,且大于中国国界:

2023年7全国最高气温(大于全国范围)

③中国国界范围的tif格式数据

我们以国界为范围提取出国界范围的最高气温数据:

2023年7月全国最高气温(全国范围)

分省份的数据

对于分省份的数据,我们以2023年7月湖北省的最高气温为例来预览一下:

2023年7月湖北省最高气温

02 数据详情

数据来源:

数据来源于彭守璋学者在国家青藏高原科学数据中心平台上分享的数据,网址为:https://data.tpdc.ac.cn/zh-hans/data/35ffff9f-8e1b-4296-801f-d8231e4f8dc3

数据说明:

官网上对数据集进行了说明,该数据根据CRU发布的全球0.5°气候数据集以及WorldClim发布的全球高分辨率气候数据集,通过Delta空间降尺度方案在中国地区降尺度生成的。并且,使用496个独立气象观测点数据进行验证,验证结果可信。本数据集包含的地理空间范围是全国主要陆地(包含港澳台地区),不含南海岛礁等区域。数据坐标系统建议使用WGS84。

数据格式:

原始数据格式:NETCDF(.nc)格式我们处理出来的数据格式:栅格格式(.tif)

数据单位:

栅格(.tif)格式:摄氏度( ℃)NETCDF(.nc)格式:0.1 ℃

时间范围:

1901-2023年(逐月)

数据坐标:

GCS_WGS_1984

空间范围:

全国/分省

范围数据提取:

依据来源于天地图官方网站提供的审图号为GS(2024)0650号的全国和省级行政边界数据(可查看之前的文章获悉详情),从大于全国范围的数据中裁剪得到全国和分省的DEM数据。

空间分辨率:

0.0083333°(约1km)

数据的引用:

彭守璋. (2020). 中国1km分辨率月最高温度数据集(1901-2023). 国家青藏高原数据中心. https://doi.org/10.5281/zenodo.3185722.Peng, S. (2020). 1-km monthly maximum temperature dataset for China (1901-2023). National Tibetan Plateau / Third Pole Environment Data Center. https://doi.org/10.5281/zenodo.3185722.

发布数据的文章的引用:

1.Peng, S.Z., Ding, Y.X., Wen, Z.M., Chen, Y.M., Cao, Y., & Ren, J.Y. (2017). Spatiotemporal change and trend analysis of potential evapotranspiration over the Loess Plateau of China during 2011–2100. Agricultural and Forest Meteorology, 233, 183–194.

2.Ding, Y.X., & Peng, S.Z. (2020). Spatiotemporal trends and attribution of drought across China from 1901–2100. Sustainability, 12(2), 477.

3.Peng, S.Z., Ding, Y.X., Liu, W.Z., & Li, Z. (2019). 1 km monthly temperature and precipitation dataset for China from 1901 to 2017. Earth System Science Data, 11, 1931–1946. https://doi.org/10.5194/essd-11-1931-2019

4.Peng, S. , Gang, C. , Cao, Y. , & Chen, Y. . (2017). Assessment of climate change trends over the loess plateau in china from 1901 to 2100. International Journal of Climatology.

如有数据使用需求请按照官方平台的要求进行引用,更多数据详情可以查看官网获悉!

03 数据获取

获取数据可以关注下方公众号~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值