- 博客(17)
- 资源 (1)
- 收藏
- 关注
原创 使用ONNX Runtime对模型进行推理
是一个开放的深度学习模型文件格式,旨在促进不同深度学习框架之间的互操作性。它提供了一种标准的方式来表示机器学习模型,使得模型可以在多个框架之间进行共享和迁移。跨平台兼容性: ONNX 支持多种深度学习框架,如 PyTorch、TensorFlow、Keras 等,开发者可以在训练模型后将其导出为 ONNX 格式,从而在其他框架中进行推理或部署。标准化: ONNX 提供了一个统一的模型描述,定义了模型的结构、参数和输入输出等信息,使得不同工具和框架能够理解模型。优化支持。
2024-10-29 21:57:41 915
原创 Transformer Explainer
下面只总结了一些可能用到的资源,对于这个工具的设计细节可以去看看论文(两页),了解一下就行了。;Transformer Explainer-CSDN直播。
2024-08-14 09:19:43 355 1
原创 Label Studio
Label Studio是一款开源的数据标注工具,用于对各种类型的数据进行标注和注释。它广泛应用于机器学习和数据科学领域,帮助用户快速生成高质量的训练数据。Label Studio因其灵活性和易用性,受到许多研究人员和开发者的青睐,特别是在需要快速生成高质量标注数据的项目中。
2024-08-02 21:27:55 2133
原创 KAN模型
今天给大家介绍一篇最近论文《KAN:Kolmogorov-Arnold Networks》,这篇论文对于在人工智能领域深耕的人还是推荐去阅读一下(虽然星主还没读过原文,48页==痛苦)。由于星主还没读过原文,这里只简单介绍一下。这篇文章提出了一个叫KAN(Kolmogorov–Arnold Networks)的模型,它对标的是MLPs(多层感知机),这个模型由数学定理Kolmogorov–Arnold启发得出的。该模型最重要的一点就是把激活函数放在了权重上,也就是。
2024-05-05 15:33:06 4008
原创 去除图像畸变及C++实现
图像畸变是指图像中出现的形变或失真,通常由于光学系统的非理想性(透镜和成像平面很难做到完全平行)或摄像机的透镜特性引起。图像畸变通常分为两种:径向畸变和切向畸变。
2024-04-26 09:39:13 1458 1
原创 相机标定及C++实现
相机标定(Camera Calibration)是计算机视觉中的一项重要技术,其目的就是确定相机的内参和外参。它可以修正镜头畸变,如桶形畸变或枕形畸变,以获得更接近真实世界的图像;在机器人视觉系统中,准确的相机标定可以提高导航和物体识别的精度。以下都只是简单介绍一下内参和外参,数学推导有些复杂,可以参考。
2024-04-24 15:02:52 1624 4
原创 特征匹配及C++实现
这种匹配依赖于图像中局部区域的描述,如SIFT(尺度不变特征变换)、SURF(加速稳健特征)、ORB(Oriented FAST and Rotated BRIEF)等。:首先,算法需要在图像中检测出关键点。比值测试是一种常用的方法,它比较了最佳匹配和次佳匹配之间的距离比值,如果比值低于某个阈值,则认为匹配有效。:直接匹配方法直接对两组特征点进行匹配,不涉及复杂的描述子生成,例如通过简单的像素值比较或者使用最近邻搜索。:间接匹配首先建立特征描述子,然后基于描述子的相似性进行点之间的匹配,如使用。
2024-04-23 18:32:30 1219 2
原创 ORB算法及C++实现
ORB(Oriented FAST and Rotated BRIEF)是一种流行的计算机视觉算法,用于在图像中检测和描述局部特征。ORB特征提取器结合了FAST关键点检测、图像金字塔生成、关键点方向的确定和BRIEF描述子计算等多种技术。ORB算法的一个主要优点是它的计算效率,它非常适合实时或计算资源受限的应用。然而,相比于SIFT或SURF等其他特征提取器,ORB的特征描述子可能在某些情况下不够鲁棒,特别是在图像内容变化较大或图像质量较低的情况下。
2024-04-22 19:59:20 1081
原创 01——三维重建简介
根据维基百科的定义,三维重建技术是指利用二维投影或影像恢复物体三维讯息(形状等)的数学过程和计算机技术。与目前很火的深度学习相比,三维重建无疑要难很多,有很多数学公式和原理要推导和理解,这提高了它的入门门槛。三维重建方向融合了计算机视觉、计算机图形学、图像处理等多个学科的知识,是一套非常复杂的工程系统,而星主主要参考了B站鲁鹏教授的视频进行讲解,(t=0.8当然,也有一些参考书可以供大家进一步的学习。
2024-04-11 16:07:23 496
原创 三维重建——DUSt3R
三维重建是指从一系列二维图像或其他传感器数据中恢复三维物体的几何结构和外观信息的过程。三维重建在许多领域中都有应用,包括计算机视觉、计算机图形学、医学影像处理、建筑和文物保护等。它可以用于创建虚拟现实环境、数字化文物、建筑物和城市场景的建模,以及在医学中用于诊断和手术规划等领域。今天星主给大家介绍一下人家最近开源的一项工作——DUSt3R(
2024-03-08 10:57:36 2394 3
原创 xfce4启动错误记录
相信有许多小伙伴也用了Windows自带的WSL来使用Ubuntu系统,可WSL上的Ubuntu系统只是一个光秃秃的命令行交互界面,没有和装虚拟机一样的完整界面。因此我使用了一个X服务器(VcXsrv)来模拟这个界面。然后使用Esc键退出编辑模式,按Shift+:进入指令模式,输入wq退出并保存。这里你可能会存在连接不上的问题,那么你需要更换一下源(如清华源,中科大源等)再试试。今天要讲的不是如何安装它,而是记录一个我启动它时出现的小错误。这个错误多半是你的环境变量出了问题。好了,现在可以进入X服务器了。
2024-03-04 14:16:29 561 1
原创 关于Stable_baselines3结果的参数解读
Stable Baselines3是一个用于实现强化学习算法的Python库,它提供了简单、一致且易于使用的接口,使得训练、评估和部署强化学习模型变得更加容易。以下是Stable Baselines3的简介:Stable Baselines3构建于PyTorch深度学习框架之上,这使得它具有高度的灵活性和性能,并且能够充分利用现代GPU进行加速。
2024-02-29 17:20:44 2643
原创 文本识别数据生成器TRDG
今天星主给大家介绍一个好玩的工具,它可以用于生成文本识别的合成数据,生成的文本图像样本可以用来训练OCR软件,它的github地址为。
2024-01-24 22:37:26 1087
原创 使用YOLOv8进行模型预测
YOLOv8是一个十分强大且好用的工具,它专为各种数据来源的高性能实时推理而设计。多功能性:能够对图像、视频乃至实时流进行推理。工程为实时、高速处理而设计、不牺牲准确性。直观的python和CLI接口,便于快速部署和测试。多种设置和参数可调,依据您的具体需求调整模型的推理行为。主页 - Ultralytics YOLOv8 文档),此处仅简单介绍。
2024-01-02 21:03:52 2467
原创 CycleGAN模型中horse2zebra数据集
运行1个epoch后的可视化结果如下,看右边最上面那4张图,第一幅是真实输入的图片(real_A);第二幅由生成器(A->B)生成的假的图片(fake_B);第三幅图(rec_A)是由第二幅图(fake_B)还原后的图,要求与real_A尽可能一致;第四幅图(idt_B)表示由real_A生成的A风格的图。第二排图的解释同上。其中horse2zebra数据集下载链接:链接:https://pan.baidu.com/s/1FXJ6AhD_GmHBsNAYTXReTA。打开trainA文件夹后的数据样式为。
2024-01-02 16:46:13 1179 3
原创 temps数据集(气温预测)
temps数据集(气温预测),下面是一部分数据示例:yearmonthdayweektemp_2temp_1averageactualfriend201611Fri454545.64529201612Sat444545.74461201613Sun454445.84156201614Mon444145.94053201615Tues4140464441201616Wed404446.1。
2023-08-20 20:27:48 331 1
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人