一.最小错误率贝叶斯
二.最小风险贝叶斯
例子:
三.两种获得后验概率的策略
优点:
信息丰富
单类问题灵活性强
增量学习
合成缺失数据
缺点:
学习过程复杂
为分布牺牲分类性能
优点:
类间差异清晰
分类边界灵活
学习简单
性能较好
缺点:
不能反应数据特性
需要全部数据进行学习
由生成模型可以得到判别模型,但由判别模型得不到生成模型。
四、极大似然估计
估计结果的准确性严重依赖于所假设的概率分布形式是否符合潜在的真实数据分布
五、朴素贝叶斯分类器
1、原理
属性条件独立性假设:每个属性独立地对分类结果发生影响
2、例子
3、拉普拉斯修正
为了避免其他属性携带的信息被训练集未出现的属性“抹去”,因此在概率估计时进行拉普拉斯修正。
例如:
六、半朴素贝叶斯分类器
例子:
SPODE:
AODE:
TAN:
七、EM算法
文章探讨了贝叶斯理论在分类问题中的应用,包括最小错误率和最小风险贝叶斯决策,强调了后验概率的重要性。还讨论了朴素贝叶斯分类器的原理和拉普拉斯修正,以及如何处理属性条件独立性假设。此外,提到了半朴素贝叶斯分类器如SPODE和AODE,以及用于参数估计的EM算法的使用。
392

被折叠的 条评论
为什么被折叠?



