【机器学习】绪论

一、人工智能历史简介

1956年夏达特茅斯会议标志着人工智能这一学科的诞生。

第一阶段:推理期

1956-1960年代:逻辑推理

主要成就: 自动定理证明系统 (例如,西蒙与纽厄尔的“Logic Theorist”系统)

第二阶段:知识期

1970s -1980s:知识工程

主要成就: 专家系统 (例如,费根鲍姆等人的“DENDRAL”系统)

第三阶段:学习期

20世纪90年代-现在:机器学习


二、基本术语

监督学习(Supervised Learning):监督学习是从标记的训练数据来推断一个功能的机器学习任务。如分类、回归。

无监督学习(Unsupervised Learning):无监督学习的问题是,在未标记的数据中,试图找到隐藏的结构。如聚类、密度估计。

强化学习(Reinforcement Learning):强化学习是机器学习中的一个领域,强调如何基于环境而行动,以取得最大化的预期利益

机器学习的基本过程:

表示:将数据对象进行特征(feature)化表示。

训练:给定一个数据样本集,从中学习出规律(模型)目标:该规律不仅适用于训练数据,也适用于未知数据(称为泛化能力)

测试:对于一个新的数据样本,利用学到的模型进行预测


三、模型评估与选择

误差:样本真实输出与预测输出之间的差异

训练(经验)误差:训练集上

测试误差:测试集

泛化误差:除训练集外所有样本

我们希望得到泛化误差小的学习器,然而我们实现并不知道新样本是什么样的,实际能做的是努力使经验误差最小化

欠拟合:对训练样本的一般性质尚未学好

过拟合: 学习器把训练样本学习的“太好”,将训练样本本身的特点当做所有样本的一般性质,导致泛化性能下降

如何获得测试集?

测试集应该与训练集“互斥”

(1)留出法

直接将数据集划分为两个互斥集合

训练/测试集划分要尽可能保持数据分布的一致性

一般若干次随机划分、重复实验取平均值

训练/测试样本比例通常为2:1~4:1

(2)k-折交叉验证法

将数据集分层采样划分为k个大小相似的互斥子集,每次用k-1个子集的并集作为训练集,余下的子集作为测试集,最终返回k个测试结果的均值,k最常用的取值是10

(3)自助法

实际模型与预期模型都使用 m个训练样本。

约有1/3的样本没在训练集中出现。

从初始数据集中产生多个不同的训练集,对集成学习有很大的好处

自助法在数据集较小、难以有效划分训练/测试集时很有用;由于改变了数据集分布可能引入估计偏差,在数据量足够时,留出法和交叉验证法更常用。

调参与选择最终模型

算法的参数:一般由人工设定,亦称“超参数”

模型的参数:一般由学习确定

测试集:模型评估与选择中用于评估测试的数据集。

例如:在研究对比不同算法的性能时,我们用测试集上的判别效果来估计模型在实际使用时的泛化能力,而把训练集划分为训练集和验证集基于验证集上的性能进行模型选择和调参

性能度量

对于回归(regression) 任务常用均方误差

对于分类任务,错误率和精度是最常用的两种性能度量:

错误率:分错样本占样本总数的比例

精度:分对样本占样本总数的比率

混淆矩阵

P-R曲线、BEP:

根据学习器的预测结果按正例可能性大小对样例进行排序,并逐个把样本作为正例进行预测,则可以得到查准率-查全率曲线,简称“P-R曲线”。

平衡点(BEP)是曲线上“查准率=查全率”时的取值,可用来用于度量P-R曲线有交叉的分类器性能高低。

F-score:

F1 度量

ROC、AUC:

AUC:ROC曲线下的面积,AUC越大模型的效果越好。

偏差-方差分解:

bias:偏差;variance:方差

  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值