【Java】—— 数组元素排序:冒泡排序与快速排序

目录

算法概述

定义

衡量排序算法的优劣:

排序算法概述

排序算法分类:内部排序和外部排序

十大内部排序算法

冒泡排序(Bubble Sort)

排序思想:

快速排序

排序思想:

内部排序性能比较与选择

性能比较

选择


算法概述

  • 定义

    • 排序:假设含有n个记录的序列为{R1,R2,...,Rn},其相应的关键字序列为{K1,K2,...,Kn}。将这些记录重新排序为{Ri1,Ri2,...,Rin},使得相应的关键字值满足条Ki1<=Ki2<=...<=Kin,这样的一种操作称为排序。

    • 通常来说,排序的目的是快速查找。

  • 衡量排序算法的优劣:

    • 时间复杂度:分析关键字的比较次数和记录的移动次数

    • 常见的算法时间复杂度由小到大依次为:Ο(1)<Ο(log2n)<Ο(n)<Ο(nlog2n)<Ο(n2)<Ο(n3)<…<Ο(2n)<Ο(n!)<O(nn)

    • 空间复杂度:分析排序算法中需要多少辅助内存

      一个算法的空间复杂度S(n)定义为该算法所耗费的存储空间,它也是问题规模n的函数。
    • 稳定性:若两个记录A和B的关键字值相等,但排序后A、B的先后次序保持不变,则称这种排序算法是稳定的。

排序算法概述

  • 排序算法分类:内部排序和外部排序

    • 内部排序:整个排序过程不需要借助于外部存储器(如磁盘等),所有排序操作都在内存中完成。

    • 外部排序:参与排序的数据非常多,数据量非常大,计算机无法把整个排序过程放在内存中完成,必须借助于外部存储器(如磁盘)。外部排序最常见的是多路归并排序。可以认为外部排序是由多次内部排序组成。

  • 十大内部排序算法

数组的排序算法很多,实现方式各不相同,时间复杂度、空间复杂度、稳定性也各不相同:

常见时间复杂度所消耗的时间从小到大排序:

O(1) < O(logn) < O(n) < O(nlogn) < O(n^2) < O(n^3) < O(2^n) < O(n!) < O(n^n)

注意,经常将以2为底n的对数简写成logn。

冒泡排序(Bubble Sort)

排序思想:

  1. 比较相邻的元素。如果第一个比第二个大(升序),就交换他们两个。

  2. 对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对。这步做完后,最后的元素会是最大的数。

  3. 针对所有的元素重复以上的步骤,除了最后一个。

  4. 持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较为止。

动态演示:https://visualgo.net/zh/sorting

/**
 * ClassName:IntelliJ IDEA
 * Description:冒泡排序简单演示
 *
 * @Author zyjstart
 * @Create:2024/8/24 15:59
 */
public class BubbleSort {
    public static void main(String[] args) {

        // 定义数组
        int[] mao = new int[]{12, 55, -9, 77, 456, -56, 55, 96, 99};

        // 目标:从小到大
        // 相邻两两对比,如果前一个比后一个大,两两对换,每次循环将最大的数值放到最后
        // 如第一轮将最大的数值排在最后,第二轮就不参与排序了,以此类推
        // 两两对比是mao.length-1轮
        for (int i = 1; i < mao.length; i++) {
            for (int j = 0; j < mao.length - i; j++) {
                // 判断,进行两两对换
                if (mao[j] > mao[j + 1]) {
                    int temp = mao[j];
                    mao[j] = mao[j + 1];
                    mao[j + 1] = temp;
                }
            }
        }

        // 完成排序,遍历数组
        for (int i = 0; i < mao.length; i++) {
            System.out.print(mao[i] + "  ");
        }
    }
}

快速排序

快速排序(Quick Sort)由图灵奖获得者Tony Hoare发明,被列为20世纪十大算法之一,是迄今为止所有内排序算法中速度最快的一种,快速排序的时间复杂度为O(nlog(n))。

快速排序通常明显比同为O(nlogn)的其他算法更快,因此常被采用,而且快排采用了分治法的思想,所以在很多笔试面试中能经常看到快排的影子。

排序思想:

  1. 从数列中挑出一个元素,称为"基准"(pivot),

  2. 重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区结束之后,该基准就处于数列的中间位置。这个称为分区(partition)操作。

  3. 递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。

  4. 递归的最底部情形,是数列的大小是零或一,也就是永远都已经被排序好了。虽然一直递归下去,但是这个算法总会结束,因为在每次的迭代(iteration)中,它至少会把一个元素摆到它最后的位置去。

动态演示:https://visualgo.net/zh/sorting

内部排序性能比较与选择

  • 性能比较

    • 从平均时间而言:快速排序最佳。但在最坏情况下时间性能不如堆排序和归并排序。

    • 从算法简单性看:由于直接选择排序、直接插入排序和冒泡排序的算法比较简单,将其认为是简单算法。对于Shell排序、堆排序、快速排序和归并排序算法,其算法比较复杂,认为是复杂排序。

    • 从稳定性看:直接插入排序、冒泡排序和归并排序时稳定的;而直接选择排序、快速排序、 Shell排序和堆排序是不稳定排序

    • 从待排序的记录数n的大小看,n较小时,宜采用简单排序;而n较大时宜采用改进排序。

  • 选择

    • 若n较小(如n≤50),可采用直接插入或直接选择排序。 当记录规模较小时,直接插入排序较好;否则因为直接选择移动的记录数少于直接插入,应选直接选择排序为宜。

    • 若文件初始状态基本有序(指正序),则应选用直接插入、冒泡或随机的快速排序为宜;

    • 若n较大,则应采用时间复杂度为O(nlgn)的排序方法:快速排序、堆排序或归并排序。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值