R语言文本分析+词云图绘制

利用R语言进行文本分析(词云图制作


在我们日常的工作、学习生活中,肯定会遇到一些情况需要进行文本分析,进行工作报告的时候、写论文的时候等等等等,如果我们能将数据可视化,那就会是一个很好的展示

在网络上有许多关于R语言词云图的制作,但是真正清晰明了的我觉得不是很多,这篇文章就以党的二十大报告为例做一次简单的文本分析并展示词云图
关于jieba和wordcloud2
jieba是用于处理自然语言的分词项目,功能很强大,词云图的制作离不开分词,获取了文章的词频才能做出词云图;wordcloud2是绘制词云图的工具。下面是代码部分

install.packages("jiebaRD")
install.packages("jiebaR")
install.packages("wordcloud2")
install.packages("wordcloud")
install.packages(<
### 使用R语言进行文本分析并创建词云图 #### 准备工作 为了使用R语言进行文本分析并生成词云图,需要安装一些必要的软件包。这些软件包提供了处理文本数据以及绘制图形的功能。 ```r install.packages("tm") # 文本挖掘工具包 install.packages("wordcloud") # 创建词云图表的库 install.packages("RColorBrewer")# 提供多种颜色方案的选择 ``` #### 加载所需库 完成上述操作之后,在每次启动新的会话时都需要加载所需的程序包: ```r library(tm) # 调用文本挖掘功能 library(wordcloud) # 绘制词云图 library(RColorBrewer) # 应用不同的色彩搭配 ``` #### 数据预处理 对于任何类型的文本文件(如txt),可以将其读入到一个字符向量中;而对于其他格式的数据集,则可能需要用到特定的方法来进行导入。这里假设有一个名为`text_data.txt` 的纯文本文件作为例子。 ```r texts <- readLines("path/to/your/text_data.txt", warn=FALSE) corpus <- Corpus(VectorSource(texts)) ``` 接着对语料库执行清理过程,包括转换成小写字母、去除标点符号、删除停用词等步骤: ```r clean_corpus <- tm_map(corpus, content_transformer(tolower)) %>% tm_map(removePunctuation) %>% tm_map(removeWords, stopwords('english')) %>% tm_map(stripWhitespace) dtm <- DocumentTermMatrix(clean_corpus) freq_words <- colSums(as.matrix(dtm)) ord <- order(-freq_words) ``` 此时已经得到了按照频率排序后的单词列表 `freq_words[ord]` ,这将是构建词云的基础素材[^1]。 #### 构建词云图 最后一步就是调用 wordcloud() 函数来实际画出图像了。可以根据个人喜好调整参数设置,比如最大显示数量 (`max.words`) 或者字体大小范围(`scale`) : ```r set.seed(1234) # 设置随机种子以便重现相同的结果 pal <- brewer.pal(8,"Dark2") wordcloud(names(freq_words)[ord], freq_words[ord], max.words=100, colors=pal[sample(length(pal), length(ord), replace = TRUE)], scale=c(5,.3), random.order=F) ``` 这段代码将会基于之前准备好的高频词汇表生成一张具有视觉冲击力且易于理解的词云图片[^2]。
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Floren han

我是小菜鸟

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值