基于遗传算法的BWM方法(最优最差方法)

文章介绍了荷兰学者提出的BWM方法,利用遗传算法简化权重计算,通过最优、最劣指标比较确定各准则权重。详细阐述了遗传算法原理和在BWM中的应用,包括编码解码、适应度函数和遗传操作,最终通过程序实例展示优化权重的过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

前言

BWM方法介绍

基本原理

权重计算

遗传算法

算法简介

原理

参考程序

程序测试

参考文献


 

前言

       荷兰学者 Jafar Rezaei 于 2015 年提出了一种新的多准则决策方法——最优最劣法(Best-worst Method),相较于层次分析法,该方法可以更为简便的确定出每一个准则的权重。本文将使用遗传算法来实现该方法。

BWM方法介绍

基本原理

        BWM方法在保留两两对比思想的前提下对层次分析法(AHP)进行了算法改进,不是直接比较所有成对指标,而是先判定最优、最劣指标,再分别比较最优指标和其余指标、其余指标和最劣指标的相对重要性程度。因此对于eq?n个指标来说,层次分析法需要eq?n%5E2-n个比较数据,而在 BWM 中,只需要将最优、最劣指标分别与eq?n-2个其余指标进行比较,得到eq?2n-3个比较数据即可计算权重分布,基本原理如下图所示。

88149d283f9e4463847599c433d55e50.png

权重计算

        假设现在有eq?n个准则,即eq?n个评价对象:

 eq?%5C%7B%7BA_%7B1%7D%2CA_%7B2%7D%2C...A_%7Bn%7D%7D%5C%7D

其中,eq?A_%7BB%7Deq?A_%7BW%7D分别表示最优准则和最差准则。

        将最优、最差准则分别与其他准则进行比较,将最优指标 eq?A_%7BB%7D对其余指标eq?A_%7Bi%7D的相对重要性程度用 1-9 标度表示,得到评分向量:

eq?V_%7BB%7D%3D%5C%7BV_%7BB1%7D%2CV_%7BB2%7D%2C...%2CV_%7BBn%7D%5C%7D

显然,eq?V_%7BBB%7D%3D1

        再将最劣最劣(最不重要、最不理想)指标 eq?A_%7BW%7D相对于其余指标eq?A_%7Bj%7D 的相对重要性程度用 1-9 标度表示,得到评分向量:

eq?V_%7BW%7D%3D%5C%7BV_%7BW1%7D%2CV_%7BW2%7D%2C...%2CV_%7BWn%7D%5C%7D

显然eq?A_%7BWW%7D%3D1

        在此规则下,所有的专家打分均大于或等于 1。

        设最优权重向量为:

eq?w%5E*%3D%28w_%7B1%7D%5E*%2Cw_%7B2%7D%5E*%2C...%2Cw_%7Bn%7D%5E*%29

        因此,最优化问题目标函数与约束条件如下:

2159dce623d1483da83ae9a9f6eacda1.png79e2dfe01c9543c39b0a51b745589e5a.png

        因此,使用遗传算法对一致性指标 eq?%5Cxi 的最小值进行优化,即可确定最优权重以及的对应的一致性指标。

遗传算法

总体思路

       首先要清楚一点,就是遗传算法是一种随机优化算法,用一组随机数带入适应度函数中计算,按照一定的规则进行多次迭代,最后在多个适应值中找到最大的一个。在本算法中,生成n个随机数,之和为1,当做权重来计算ξ,对结果进行取倒数操作,多次迭代后找到的最大值再取倒数之后就是最小值了。

算法简介

        遗传算法是模仿生物遗传学和自然选择机理,通过人工方式所构造的一类优化搜索算法,是对生物进化过程进行的一种数学仿真,是进化计算的最重要的形式。这是一种一种新的全局优化搜索算法,以其简单通用、鲁棒性强、适合并行处理及应用范围广等显著特点,奠定了它作为21世纪关键智能计算之一的地位。

原理

1. 编码与解码:将问题结构变换为位串形式编码表示的过程。本例中待优化参数有eq?n个,可以将每一个个体的二进制编码分为eq?n组,解码时对每一个参数单独解码即可

2. 适应度函数

(1)适应度(fitness)就是借鉴生物个体对环境的适应程度,而对问题中的个体对象所设计的表征其优劣的一种测度。

(2)适应度函数(fitness function)就是问题中的全体个体与其适应度之间的一个对应关系。它一般是一个实值函数。该函数就是遗传算法中指导搜索的评价函数。

(3)体现染色体的适应能力,对问题中的每一个染色体都能进行度量的函数,叫适应度函数。

(4)对优化问题,适应度函数就是目标函数。

       在本例中所设计的适应度函数是计算一致性指标,对其进行取倒数操作,对倒数最大值的优化就是对一致性指标最小值的优化。          

3. 遗传、选择、交叉、变异

该部分的具体操作可以参考:

【精选】遗传算法原理及其matlab程序实现_遗传算法实例matlab-CSDN博客

参考程序

1. 主函数

clear;clc;close all
UnknowNum = input("需要优化的权重的数目为:");
mic = input("最优准则为:");
lic = input("最差准则为:");
popsize = 20;     %群体大小
PartLen = 7;    % 每一部分的码长(可以不改)
N = 20000;  % 遗传迭代次数

chromlength = UnknowNum*PartLen; %字符串长度(个体长度)
pc = 0.6;         %交叉概率,只有在随机数小于pc时,才会产生交叉
pm = 0.001;       %变异概率
pop = initpop(popsize,chromlength);   %随机产生初始群体
VBi = repmat(mic,popsize,1);
VjW = repmat(lic,popsize,1);
Best = find(mic == 1,2);
Worst = find(lic == 1,2);
y = zeros(1,N);% 初始化
x = cell(1,N);
for i=1:N    % 遗传代数
        objvalue = calobjvalue(pop,PartLen,popsize, ...
            UnknowNum,Best,Worst,VBi,VjW);  %计算目标函数
        fitvalue = calfitvalue(objvalue);   %计算群体中每个个体的适应度
        newpop = selection(pop,fitvalue);   %复制
        newpop1 = crossover(newpop,pc);     %交叉
        newpop2 = mutation(newpop1,pm);     %变异
        objvalue = calobjvalue(newpop2,PartLen,popsize, ...
            UnknowNum,Best,Worst,VBi,VjW);    %计算目标函数
        fitvalue = calfitvalue(objvalue);   %计算群体中每个个体的适应度
        [bestindividual,bestfit]=best(newpop2,fitvalue);%求出群体中适应值最大的个体及其适应值
        y(i)=bestfit;    %返回的 y 是自适应度值,而非函数值
        x{i}=decode(bestindividual,UnknowNum,PartLen);%将自变量解码成十进制
        pop=newpop2;
end
[z,index]=max(y);
w = cell2mat(x(index));
for i=1:UnknowNum
    B(i) = abs(w(Best)./w(i)-VBi(i));
    W(i) = abs(w(i)./w(Worst)-VjW(i)); 
end
kesi = 1/max([B,W]);
disp("最优权重为:");
disp(w);
disp("最优一致性数量指标:");
disp(kesi);

2. 群体初始化

%初始化
function pop = initpop(popsize,chromlength) 
    pop=round(rand(popsize,chromlength));
end

3. 适应度函数

%实现目标函数的计算,将二值域中的数转化为变量域的数
function objvalue = calobjvalue(pop,PartLen,popsize,UnknowNum,Best,Worst,VBi,VjW)       
    temp = zeros(popsize,UnknowNum);
    for i=1:UnknowNum
        temp(:,i) = decodechrom(pop,PartLen*(i-1)+1,PartLen);%将pop每行的每一部分转化成十进制数
    end
    temp = temp./repmat(sum(temp,2),1,UnknowNum); % 归一化
    d1 = abs((temp(:,Best)./temp)-VBi);
    d2 = abs((temp./temp(:,Worst))-VjW);
    dmax = max([d1,d2],[],2);
    objvalue = 1./dmax;  %计算目标函数值
end

4. 计算个体适应度

function fitvalue = calfitvalue(objvalue)
    [px,py]=size(objvalue);   %目标值有正有负
    for i=1:px
            if objvalue(i)>0                    
                    temp=objvalue(i);          
            else
                    temp=0.0;
            end
            fitvalue(i)=temp;
    end
    fitvalue=fitvalue';
end

5. 选择

function newpop = selection(pop,fitvalue) 
[px,py] = size(pop);
totalfit=sum(fitvalue);     %求适应值之和
fitvalue=fitvalue/totalfit; %单个个体被选择的概率
fitvalue=cumsum(fitvalue);    
ms=sort(rand(px,1));    %从小到大排列
fitin=1;
newin=1;
while newin<=px 
        if(ms(newin))<fitvalue(fitin)
                newpop(newin,:)=pop(fitin,:);
                newin=newin+1;
        else
                fitin=fitin+1;
        end
end

6. 交叉

function newpop = crossover(pop,pc)  
    [px,py]=size(pop);
    newpop=ones(size(pop));
    for i=1:2:px-1      
            if(rand<pc)
                    cpoint=round(rand*py);
                    newpop(i,:)=[pop(i,1:cpoint),pop(i+1,cpoint+1:py)];
                    newpop(i+1,:)=[pop(i+1,1:cpoint),pop(i,cpoint+1:py)];
            else
                    newpop(i,:)=pop(i,:);
                    newpop(i+1,:)=pop(i+1,:);
            end
    end
end

7. 变异

function newpop = mutation(pop,pm)
    [px,py]=size(pop);
    newpop=ones(size(pop));
    for i=1:px
        if(rand<pm)
            mpoint=round(rand*py);     %产生的变异点在1-10之间
            if mpoint<=0
                mpoint=1;                         %变异位置
            end
            newpop(i,:)=pop(i,:);
            if any(newpop(i,mpoint))==0
                newpop(i,mpoint)=1;
            else
                newpop(i,mpoint)=0;
            end
        else
            newpop(i,:)=pop(i,:);
        end
    end
end

8. 群体最大适应值及个体

function [bestindividual,bestfit]=best(pop,fitvalue)
[px,py]=size(pop);
bestindividual=pop(1,:);
bestfit=fitvalue(1);
for i=2:px
    if fitvalue(i)>bestfit
        bestindividual=pop(i,:);
        bestfit=fitvalue(i);
    end
end

9. 染色体解码

function pop2=decodechrom(pop,spoint,length)%1  10
    pop1=pop(:,spoint:spoint+length-1);
    pop2=decodebinary(pop1);
end

解码子函数

function pop2=decodebinary(pop)
[px,py]=size(pop);     %求pop行和列数
for i=1:py
pop1(:,i)=2.^(py-i).*pop(:,i);
end
pop2=sum(pop1,2);     %求pop1的每行之和

10. 最终权重解码

function w = decode(bestindividual,UnkonwNum,PartLen)
    w = zeros(1,UnkonwNum);
    for i = 1:UnkonwNum
        w(i) = decodechrom(bestindividual,PartLen*(i-1)+1,PartLen);
    end
    w = w/sum(w);
end

程序测试

需要优化的权重的数目为:4
最优准则为:[1,5,3,9]
最差准则为:[3,5,1,7]
最优权重为:
    0.4248    0.1842    0.2444    0.1466

最优一致性数量指标:
    0.4167

声明:

1. 本文代码参考了本站的一位博主,由于时间久远未找到原文,如果原博主看到可以联系我。

2. 本文所有图片均剪切自参考文献。

参考文献

[1]蒋嘉.公共资源交易平台运行绩效评价研究.2022.东南大学,MA thesis.

 

 

 

评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值