使用Yolov8训练太阳能电池板缺陷数据集 并构建和训练一个深度学习模型来进行EL图像缺陷识别 太阳能电池组件图像 EL图像缺陷识别 识别算法
太阳能电池组件图像 EL图像缺陷识别 识别算法
假设你有一套数据集
太阳能电池板缺陷数据集,1200张,Labelme标注
对于太阳能电池组件的EL(电致发光)图像缺陷识别,可以采用深度学习方法来实现。假定同学 你有1200张图像组成的数据集,并且使用Labelme进行了标注,这意味着你的数据已经被标记了边界框或者多边形区域,对应于图像中的缺陷位置。
以下文字及代码仅供参考 。
我们将使用YOLOv5作为示例框架。并且提供了良好的性能和速度平衡。通过详细的步骤来指导你如何准备数据、设置环境以及编写必要的代码来进行训练。
环境设置
首先,确保你的环境中已经安装了Python 3.8+ 和 PyTorch 1.7+,并且有CUDA支持(如果你打算在GPU上运行)。然后按照以下步骤操作:
安装依赖项
# 克隆YOLOv5仓库
git clone https://github.com/ultralytics/yolov5.git
cd yolov5
# 安装所需的库
pip install -r requirements.txt
数据准备
你需要将Labelme标注的数据转换为YOLO格式。这包括创建一个包含所有类别名称的.names
文件,以及每个图像对应的文本文件,其中记录了边界框坐标和类别ID。
Labelme到YOLO格式转换
你可以使用一些现成的脚本来完成这个任务,或者自己编写Python脚本。这里提供一个简单的转换逻辑:
import json
import os
from pathlib import Path
def labelme_to_yolo(labelme_json, output_dir):
with open(labelme_json) as f:
data = json.load(f)
image_height = data['imageHeight']
image_width = data['imageWidth']
for shape in data['shapes']:
label = shape['label']
points = shape['points']
# 计算中心点和宽高
x_coords = [p[0] for p in points]
y_coords = [p[1] for p in points]
center_x = sum(x_coords) / len(points) / image_width
center_y = sum(y_coords) / len(points) / image_height
width = (max(x_coords) - min(x_coords)) / image_width
height = (max(y_coords) - min(y_coords)) / image_height
# 写入YOLO格式文件
class_id = 0 # 假设只有一个类别
line = f"{class_id} {center_x:.6f} {center_y:.6f} {width:.6f} {height:.6f}\n"
output_path = Path(output_dir) / f"{Path(labelme_json).stem}.txt"
with open(output_path, 'a') as file:
file.write(line)
# 应用转换函数到所有JSON文件
json_dir = 'path/to/json/files'
output_dir = 'path/to/output/dir'
os.makedirs(output_dir, exist_ok=True)
for json_file in Path(json_dir).glob('*.json'):
labelme_to_yolo(json_file, output_dir)
创建数据集配置文件
创建一个名为solar_panel_defects.yaml
的数据集配置文件,内容如下:
train: path/to/train/images
val: path/to/validation/images
nc: 1 # 类别数量
names: ['defect'] # 类别名称
模型训练
现在你可以开始训练模型了。假设你已经准备好了一个叫做solar_panel_defects.yaml
的数据集配置文件,以及相应的训练和验证图像路径。
import torch
from yolov5 import train
# 设置训练参数
weights = 'yolov5s.pt' # 使用预训练权重
data_yaml_path = 'solar_panel_defects.yaml' # 数据集配置文件路径
project_name = 'solar_panel_defect_detection'
output_dir = f'{project_name}/runs'
# 开始训练
train.run(
weights=weights,
data=data_yaml_path,
imgsz=640, # 图像大小
batch_size=16, # 批次大小
epochs=100, # 迭代次数
project=output_dir,
name='exp',
)
模型评估与推理
训练完成后,你可以对模型进行评估并执行推理。以下是相关的命令行指令:
# 验证模型
python val.py --weights runs/exp/weights/best.pt --data solar_panel_defects.yaml --img 640 --task val
# 推理测试图像
python detect.py --weights runs/exp/weights/best.pt --source path/to/test/images --img 640 --conf 0.25 --iou 0.45
文章目录
构建和训练一个深度学习模型来进行EL图像缺陷识别的主要步骤:
1. 数据准备
- 加载和解析标注:由于你使用的是Labelme进行标注,你需要编写代码来解析JSON文件,提取出图像路径、类别标签以及对应的边界框或多边形坐标。
- 数据增强:为了增加数据多样性,可以对图像应用旋转、缩放、翻转等变换。这有助于提高模型的泛化能力。
- 划分数据集:将数据集划分为训练集、验证集和测试集,例如70%用于训练,15%用于验证,15%用于测试。
2. 模型选择
根据问题的性质,可以选择适合目标检测任务的预训练模型,如Faster R-CNN, YOLO, SSD等。这些模型已经在大规模数据集上进行了预训练,因此它们可以作为良好的起点。
3. 数据预处理
- 调整大小:确保所有输入图像具有相同的尺寸,以匹配所选模型的要求。
- 归一化:通常需要将像素值标准化到[0,1]范围或减去均值并除以标准差。
4. 构建和训练模型
- 迁移学习:如果使用预训练模型,则冻结基础网络层,仅微调顶层分类器。这可以帮助加速训练过程并且减少过拟合的风险。
- 自定义损失函数:如果必要的话,你可以为特定类型的缺陷设计自定义的损失函数。
- 超参数调优:调整学习率、批次大小、优化器等超参数,以获得最佳性能。
5. 模型评估
- 评估指标:计算准确率、召回率、F1分数、mAP(mean Average Precision)等常见的目标检测评价指标。
- 可视化结果:绘制预测框与真实框对比图,检查模型的表现。
6. 部署模型
一旦模型训练完成并且达到了满意的性能水平,就可以将其部署到实际的应用环境中,比如嵌入式系统或云服务中。
示例代码框架
这里给出一个简单的基于PyTorch的YOLOv5模型的代码示例,假设你已经安装好了必要的库,并且准备好了一个格式正确的COCO风格的数据集。
import torch
from pathlib import Path
from yolov5 import train, val, detect, export
# 设置环境变量
weights = 'yolov5s.pt' # 使用预训练权重
data_yaml_path = 'path/to/data.yaml' # COCO格式的数据配置文件路径
project_name = 'solar_panel_defect_detection'
output_dir = f'{project_name}/runs'
# 训练模型
train.run(
weights=weights,
data=data_yaml_path,
imgsz=640, # 图像大小
batch_size=16, # 批次大小
epochs=100, # 迭代次数
project=output_dir,
name='exp',
)
# 验证模型
val.run(
weights=f'{output_dir}/exp/weights/best.pt',
data=data_yaml_path,
imgsz=640,
project=output_dir,
name='val_results'
)
# 使用模型进行推理
detect.run(
weights=f'{output_dir}/exp/weights/best.pt',
source='path/to/test/images', # 测试图像路径
imgsz=640,
conf_thres=0.25, # 置信度阈值
iou_thres=0.45, # IOU阈值
project=output_dir,
name='inference_results'
)