哈希冲突
题目描述
众所周知,模数的 hash 会产生冲突。例如,如果模的数 p = 7 p=7 p=7,那么 4 4 4 和 11 11 11 便冲突了。
B 君对 hash 冲突很感兴趣。他会给出一个正整数序列 value \text{value} value。
自然,B 君会把这些数据存进 hash 池。第 value k \text{value}_k valuek 会被存进 ( k m o d p ) (k \mod p) (kmodp) 这个池。这样就能造成很多冲突。
B 君会给定许多个 p p p 和 x x x,询问在模 p p p 时, x x x 这个池内 数的总和。
另外,B 君会随时更改 value k \text{value}_k valuek。每次更改立即生效。
保证 1 ≤ p < n {1\leq p<n} 1≤p<n.
输入格式
第一行,两个正整数 n n n, m m m,其中 n n n 代表序列长度, m m m 代表 B 君的操作次数。
第一行, n n n 个正整数,代表初始序列。
接下来 m m m 行,首先是一个字符 cmd \text{cmd} cmd,然后是两个整数 x , y x,y x,y。
-
若 cmd = A \text{cmd}=\text{A} cmd=A,则询问在模 x x x 时, y y y 池内 数的总和。
-
若 cmd = C \text{cmd}=\text{C} cmd=C,则将 value x \text{value}_x valuex 修改为 y y y。
输出格式
对于每个询问输出一个正整数,进行回答。
样例 #1
样例输入 #1
10 5
1 2 3 4 5 6 7 8 9 10
A 2 1
C 1 20
A 3 1
C 5 1
A 5 0
样例输出 #1
25
41
11
提示
样例解释
A 2 1
的答案是 1+3+5+7+9=25
.
A 3 1
的答案是 20+4+7+10=41
.
A 5 0
的答案是 1+10=11
.
数据规模
对于 10 % 10\% 10%的数据,有 n ≤ 1000 , m ≤ 1000 n\leq 1000,m\leq 1000 n≤1000,m≤1000.
对于 60 % 60\% 60% 的数据,有 n ≤ 100000. m ≤ 100000 n\leq 100000.m\leq 100000 n≤100000.m≤100000.
对于 100 % 100\% 100% 的数据,有 n ≤ 150000 , m ≤ 150000 n\leq 150000,m\leq 150000 n≤150000,m≤150000.
保证所有数据合法,且 1 ≤ value i ≤ 1000 1\leq \text{value}_i \leq 1000 1≤valuei≤1000.
大致题意:1. 询问下标模x为y的所有数之和
2. 修改第x数为y
解题思路:
首先,会想到暴力枚举两层循环,但O(n2)的时间复杂度必然会TLE
for(int i = 1; i < n; i ++)
for(int j = 1; j <= n; j ++)
ans[i][j%i] = v[j];
所以本题我们得用根号算法
有的时候,我们可以对一个题想出两个暴力,各有各自的长处和短处。如果我们能对数据范围进行分块处理,或者两个暴力分别算之后拼接在一起,就用两个合在一起的暴力,实现了正解。通常这个分界点可以取到 n— n \sqrt{n} n
所以叫根号算法。
Code:
#include <bits/stdc++.h>
using namespace std;
const int N = 150010;
int ans[400][400], v[N]; //ans[p][k]存储模 p 后为 k 的所有数之和
int n, m;
int main()
{
cin >> n >> m;
int size = sqrt(n); //根号算法核心--分块
for(int i = 1; i <= n; i ++)
{
cin >> v[i];
for(int p = 1; p <= size; p ++)
ans[p][i%p] += v[i]; //预处理出ans[p][k](p <= size)所有数之和
}
while(m -- )
{
char op[2];
int x, y;
cin >> op >> x >> y;
if(*op == 'A')
{
if(x <= size) cout << ans[x][y] << endl; //p <= size时,直接O(1)输出
else //p > size时,需要暴力枚举求出
{
int sum = 0;
for(int i = y; i <= n; i += x)
sum += v[i];
cout << sum << endl;
}
}
else //修改 p <= size 的改变后的和
{
for(int i = 1; i <= size; i ++)
ans[i][x%i] = ans[i][x%i] - v[x] + y;
v[x] = y;
}
}
return 0;
}