P3396 哈希冲突(根号算法)

哈希冲突

题目描述

众所周知,模数的 hash 会产生冲突。例如,如果模的数 p = 7 p=7 p=7,那么 4 4 4 11 11 11 便冲突了。

B 君对 hash 冲突很感兴趣。他会给出一个正整数序列 value \text{value} value

自然,B 君会把这些数据存进 hash 池。第 value k \text{value}_k valuek 会被存进 ( k m o d    p ) (k \mod p) (kmodp) 这个池。这样就能造成很多冲突。

B 君会给定许多个 p p p x x x,询问在模 p p p 时, x x x 这个池内 数的总和

另外,B 君会随时更改 value k \text{value}_k valuek。每次更改立即生效。

保证 1 ≤ p < n {1\leq p<n} 1p<n.

输入格式

第一行,两个正整数 n n n, m m m,其中 n n n 代表序列长度, m m m 代表 B 君的操作次数。

第一行, n n n 个正整数,代表初始序列。

接下来 m m m 行,首先是一个字符 cmd \text{cmd} cmd,然后是两个整数 x , y x,y x,y

  • cmd = A \text{cmd}=\text{A} cmd=A,则询问在模 x x x 时, y y y 池内 数的总和

  • cmd = C \text{cmd}=\text{C} cmd=C,则将 value x \text{value}_x valuex 修改为 y y y

输出格式

对于每个询问输出一个正整数,进行回答。

样例 #1

样例输入 #1

10 5
1 2 3 4 5 6 7 8 9 10
A 2 1
C 1 20
A 3 1
C 5 1
A 5 0

样例输出 #1

25
41
11

提示

样例解释

A 2 1 的答案是 1+3+5+7+9=25.

A 3 1 的答案是 20+4+7+10=41.

A 5 0 的答案是 1+10=11.

数据规模

对于 10 % 10\% 10%的数据,有 n ≤ 1000 , m ≤ 1000 n\leq 1000,m\leq 1000 n1000,m1000.

对于 60 % 60\% 60% 的数据,有 n ≤ 100000. m ≤ 100000 n\leq 100000.m\leq 100000 n100000.m100000.

对于 100 % 100\% 100% 的数据,有 n ≤ 150000 , m ≤ 150000 n\leq 150000,m\leq 150000 n150000,m150000.

保证所有数据合法,且 1 ≤ value i ≤ 1000 1\leq \text{value}_i \leq 1000 1valuei1000.

大致题意:1. 询问下标模x为y的所有数之和
2. 修改第x数为y
解题思路:
首先,会想到暴力枚举两层循环,但O(n2)的时间复杂度必然会TLE

for(int i = 1; i < n; i ++)
	for(int j = 1; j <= n; j ++)
		ans[i][j%i] = v[j];

所以本题我们得用根号算法

有的时候,我们可以对一个题想出两个暴力,各有各自的长处和短处。如果我们能对数据范围进行分块处理,或者两个暴力分别算之后拼接在一起,就用两个合在一起的暴力,实现了正解。通常这个分界点可以取到 n— n \sqrt{n} n
所以叫根号算法。

Code:

#include <bits/stdc++.h>
using namespace std;

const int N = 150010;

int ans[400][400], v[N];	//ans[p][k]存储模 p 后为 k 的所有数之和
int n, m;

int main()
{
	cin >> n >> m;

	int size = sqrt(n);	//根号算法核心--分块
	for(int i = 1; i <= n; i ++)
	{
		cin >> v[i];
		for(int p = 1; p <= size; p ++)
			ans[p][i%p] += v[i];	//预处理出ans[p][k](p <= size)所有数之和
	}

	while(m -- )
	{
		char op[2];
		int x, y;
		cin >> op >> x >> y;

		if(*op == 'A')
		{
			if(x <= size)	cout << ans[x][y] << endl;	//p <= size时,直接O(1)输出
			else	//p > size时,需要暴力枚举求出
			{
				int sum = 0;
				for(int i = y; i <= n; i += x)
					sum += v[i];
				cout << sum << endl;
			}
		}
		else	//修改 p <= size 的改变后的和
		{
			for(int i = 1; i <= size; i ++)
				ans[i][x%i] = ans[i][x%i] - v[x] + y;
			v[x] = y;
		}
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zlq070707

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值