⛄一、EKF滤波二阶RC电池模型SOC估计仿真
EKF滤波(Extended Kalman Filter)是一种常用的滤波器,用于通过观测值来估计系统状态的非线性动态系统。以下是EKF滤波的基本步骤:
系统模型:建立描述系统动态行为的状态空间模型,包括状态方程和观测方程。该模型通常以非线性的形式表示。
线性化:对系统模型进行近似线性化,以便能够应用卡尔曼滤波器的线性假设。这涉及对状态方程和观测方程在当前状态点进行一阶泰勒展开,并得到线性化的动力学矩阵和观测矩阵。
初始化:设置初始状态和协方差矩阵,即对系统初始状态的估计和不确定性进行初始化。
预测步骤:根据线性化的状态方程,利用先前的状态估计进行预测,并根据过程噪声模型更新状态协方差矩阵。
更新步骤:利用观测方程和线性化的观测模型,将实际观测值与预测状态进行比较,从而得到新的状态估计和协方差矩阵。
迭代优化:重复执行预测和更新步骤,以逐渐优滤波器适用于非线性系统的状态估计问题,但它也有一些局限性,如对线性化误差的敏感性和不准确