【SOC估计】EKF滤波二阶RC电池模型SOC估计仿真【含Matlab源码 2767期】

本文介绍了如何使用EKF滤波器对二阶RC电池模型的SOC进行估计仿真。详细阐述了EKF滤波的基本步骤,包括系统模型线性化、初始化、预测和更新,并提供了部分Matlab源代码示例。还提到了估计结果的分析和滤波器参数的调整优化。最后,给出了仿真运行结果以及使用的Matlab版本和参考文献。
摘要由CSDN通过智能技术生成

在这里插入图片描述

⛄一、EKF滤波二阶RC电池模型SOC估计仿真

EKF滤波(Extended Kalman Filter)是一种常用的滤波器,用于通过观测值来估计系统状态的非线性动态系统。以下是EKF滤波的基本步骤:

系统模型:建立描述系统动态行为的状态空间模型,包括状态方程和观测方程。该模型通常以非线性的形式表示。

线性化:对系统模型进行近似线性化,以便能够应用卡尔曼滤波器的线性假设。这涉及对状态方程和观测方程在当前状态点进行一阶泰勒展开,并得到线性化的动力学矩阵和观测矩阵。

初始化:设置初始状态和协方差矩阵,即对系统初始状态的估计和不确定性进行初始化。

预测步骤:根据线性化的状态方程,利用先前的状态估计进行预测,并根据过程噪声模型更新状态协方差矩阵。

更新步骤:利用观测方程和线性化的观测模型,将实际观测值与预测状态进行比较,从而得到新的状态估计和协方差矩阵。

迭代优化:重复执行预测和更新步骤,以逐渐优滤波器适用于非线性系统的状态估计问题,但它也有一些局限性,如对线性化误差的敏感性和不准确

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab领域

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值