Floyd求最短路(Floyd算法)

参考:约会怎么走到目的地最近呢?一文讲清所有最短路算法问题-CSDN博客

有4个城市8条路,公路上的数字表示这条公路的长短,并且路是单向的,现在要求我们求出任意两个城市之间的最短路程,也就是求任意两个点之间的最短路经,这就是多源最短路问题

1.假设我们只允许经过1号城市,求任意两城市之间的最短路程,应该如何求呢?

只需判断e[ i ][1]+e[1][ j ]是否比e[ i ][ j ]要小即可。

for(int i=1;i<=n;++i)   //遍历起点城市
	for(int j=1;j<=n;++j) //遍历被缩小距离的城市
		if(e[i][j] > e[i][1]+e[1][j]) //如果我通过1城市进行中转后的距离比你现在直接到要近
			e[i][j]=e[i][1]+e[1][j];//则直接赋值给给e[i][j]即可

2.假设我们允许经过1号城市和2号城市,求任意两点之间的最短路程,应该如何求呢?

我们需要在只允许经过 1号顶点时任意两点的最短路程的结果下,再判断如果经过2号顶点是否可以使得 i 号顶点到 j 号顶点之间的路程变得更短,即判断e[ i ][2]+e[2][ j ] 是否要比 e[ i ][ j ] 要小。
 

//经过一号顶点
for(int i=1;i<=n;++i)//遍历起点城市
	for(int j=1;j<=n;++j)//遍历被缩小距离的城市
		if(e[i][j] > e[i][1]+e[1][j])//如果我通过1城市进行中转后的距离比你现在直接到要近
			e[i][j]=e[i][1]+e[1][j];//则直接赋值给给e[i][j]即可
			
//经过二号顶点
for(int i=1;i<=n;++i)//遍历起点城市
	for(int j=1;j<=n;++j)//遍历被缩小距离的城市
		if(e[i][j] > e[i][2]+e[2][j])//如果我通过2城市进行中转后的距离比你现在直接到要近
			e[i][j]=e[i][2]+e[2][j];//则直接赋值给给e[i][j]即可

 以此类推,如果我们允许经过从1号到n号所有城市求两点间最短路程,可以写出代码:

for(int k=1;k<=n;k++) //一共有n个城市
    {
        for(int i=1;i<=n;i++)  //遍历起点城市
        {
            for(int j=1;j<=n;j++)  //遍历需要缩短距离的城市
            {
                    d[i][j]=min(d[i][j],d[i][k]+d[k][j]);  //经过k号城市进行中转的距离与原来直接从起点到终点的距离是否有缩小
            }
        }
    }

这也就是Floyd算法了,Floyd属于多源最短路径算法能够求出任意2个顶点之间的最短路径,支持负权边。

题目描述

给定一个 n 个点 m 条边的有向图,图中可能存在重边和自环,边权可能为负数。

再给定 k 个询问,每个询问包含两个整数 x 和 y,表示查询从点 x 到点 y 的最短距离,如果路径不存在,则输出 impossible

数据保证图中不存在负权回路。

输入格式

第一行包含三个整数 n,m,k。

接下来 m 行,每行包含三个整数 x,y,z,表示存在一条从点 x 到点 y 的有向边,边长为 z。

接下来 k 行,每行包含两个整数 x,y,表示询问点 x 到点 y 的最短距离。

输出格式

共 k 行,每行输出一个整数,表示询问的结果,若询问两点间不存在路径,则输出 impossible

数据范围

1≤n≤200,
1≤k≤n^2
1≤m≤20000,
图中涉及边长绝对值均不超过 1000010000。

输入样例:
3 3 2
1 2 1
2 3 2
1 3 1
2 1
1 3
输出样例:
impossible
1

思路:就像上面一样,遍历所有点,求从起点经过中间的点中转后到终点的最短距离

for(int k=1;k<=n;k++) //一共有n个城市
    {
        for(int i=1;i<=n;i++)  //遍历起点城市
        {
            for(int j=1;j<=n;j++)  //遍历需要缩短距离的城市
            {
                    d[i][j]=min(d[i][j],d[i][k]+d[k][j]);  //经过k号城市进行中转的距离与原来直接从起点到终点的距离是否有缩小
            }
        }
    }

示例代码:

// 这道题是多源点问题,有多个x到y的路径要求
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;

const int N=210,INF=1e9; //表示正无穷
int n,m,q;
int d[N][N]; //d[i][j]表示从i到j的最短路长度

void floyd()
{
    for(int k=1;k<=n;k++)
    {
        for(int i=1;i<=n;i++)
        {
            for(int j=1;j<=n;j++)
            {
                    d[i][j]=min(d[i][j],d[i][k]+d[k][j]);
            }
        }
    }
}

int main()
{
    scanf("%d%d%d",&n,&m,&q);
    for(int i=1;i<=n;i++)
    {
        for(int j=1;j<=n;j++)
        {
            if(i==j) d[i][j]=0;  //自环边的权值设成了0,是为了干掉自环(因为不存在负权回路,自环没有意义)
            else d[i][j]=INF;
        }
    }
    while(m--)
    {
        int a,b,c;
        scanf("%d%d%d",&a,&b,&c);
        d[a][b]=min(d[a][b],c);  //输入每条边,只保留最短边
    }
    floyd();
    
    while(q--)
    {
        int a,b;
        scanf("%d%d",&a,&b);
        int t=d[a][b];
        if(t>INF/2) puts("impossible"); //不能走到终点,但由于负数边权的存在,终点的距离可能被其他长度是正无穷的距离更新
        else printf("%d\n",t);
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值