有边数限制的最短路(Bellman_Ford)

给定一个 n 个点 m 条边的有向图,图中可能存在重边和自环, 边权可能为负数

请你求出从 11 号点到 n 号点的最多经过 k 条边的最短距离,如果无法从 1 号点走到 n 号点,输出 impossible

注意:图中可能 存在负权回路 。

输入格式

第一行包含三个整数 n,m,k。

接下来 m 行,每行包含三个整数 x,y,z, 表示存在一条从点 x 到点 y 的有向边,边长为 z。

点的编号为 1∼n。

输出格式

输出一个整数,表示从 1 号点到 n 号点的最多经过 k 条边的最短距离。

如果不存在满足条件的路径,则输出 impossible

数据范围

1≤n,k≤500,
1≤m≤10000,
1≤x,y≤n,
任意边长的绝对值不超过 10000。

输入样例:

3 3 1
1 2 1
2 3 1
1 3 3

输出样例:

3

 

解 

#include<iostream>
#include<cstring>
#include<algorithm>

using namespace std;

const int N = 510, M = 10010;

struct Edge{
    int x;
    int y;
    int z;
}edges[M];

int dist[N];
int backup[N];
int n, m, k;

void bellman_ford(){
    memset(dist, 0x3f, sizeof dist);
    dist[1] = 0;
    
    for(int i = 0; i < k; i++){
        memcpy(backup, dist, sizeof dist);//备份 防止串联
        for(int j = 0; j < m; j++){
            auto e = edges[j];
            dist[e.y] = min(backup[e.x] + e.z, dist[e.y]);
        }
    }
}

int main(){
    scanf("%d%d%d", &n, &m, &k);
    
    for(int i = 0; i < m; i++){
        int x, y, z;
        scanf("%d%d%d", &x, &y, &z);
        edges[i] = {x, y, z};
    }
    
    bellman_ford();
    
    if(dist[n] > 0x3f3f3f3f / 2)puts("impossible");//除2是防止负权边更新引起错误判断
    else printf("%d", dist[n]);
    
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值