给定一个 n 个点 m 条边的有向图,图中可能存在重边和自环, 边权可能为负数。
请你求出从 11 号点到 n 号点的最多经过 k 条边的最短距离,如果无法从 1 号点走到 n 号点,输出 impossible
。
注意:图中可能 存在负权回路 。
输入格式
第一行包含三个整数 n,m,k。
接下来 m 行,每行包含三个整数 x,y,z, 表示存在一条从点 x 到点 y 的有向边,边长为 z。
点的编号为 1∼n。
输出格式
输出一个整数,表示从 1 号点到 n 号点的最多经过 k 条边的最短距离。
如果不存在满足条件的路径,则输出 impossible
。
数据范围
1≤n,k≤500,
1≤m≤10000,
1≤x,y≤n,
任意边长的绝对值不超过 10000。
输入样例:
3 3 1
1 2 1
2 3 1
1 3 3
输出样例:
3
解
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
const int N = 510, M = 10010;
struct Edge{
int x;
int y;
int z;
}edges[M];
int dist[N];
int backup[N];
int n, m, k;
void bellman_ford(){
memset(dist, 0x3f, sizeof dist);
dist[1] = 0;
for(int i = 0; i < k; i++){
memcpy(backup, dist, sizeof dist);//备份 防止串联
for(int j = 0; j < m; j++){
auto e = edges[j];
dist[e.y] = min(backup[e.x] + e.z, dist[e.y]);
}
}
}
int main(){
scanf("%d%d%d", &n, &m, &k);
for(int i = 0; i < m; i++){
int x, y, z;
scanf("%d%d%d", &x, &y, &z);
edges[i] = {x, y, z};
}
bellman_ford();
if(dist[n] > 0x3f3f3f3f / 2)puts("impossible");//除2是防止负权边更新引起错误判断
else printf("%d", dist[n]);
return 0;
}