NNDL 实验三 线性回归

2.2 线性回归

这次作业用到了较多的数据可视化方面的东西,不了解的同学可以去看一看这一块的知识点。这里附一个链接,这位博主讲的很详细。Gingkens

2.2.1 数据库构建

构造一个小的回归数据集:

生成 150 个带噪音的样本,其中 100 个训练样本,50 个测试样本,并打印出训练数据的可视化分布。

import torch as tc
from matplotlib import pyplot as plt  # matplotlib 是 Python 的绘图库
from random import *


def linear_func(x, w=1.2, b=0.5):
    y = w * x + b
    return y


def create_toy_data(func, interval, sample_num, noise, add_outlier, outlier_ratio):
    """
    根据给定的函数,生成样本
    输入:
       - func:函数
       - interval: x的取值范围
       - sample_num: 样本数目
       - noise: 噪声均方差
       - add_outlier:是否生成异常值
       - outlier_ratio:异常值占比
    输出:
       - X: 特征数据,shape=[n_samples,1]
       - y: 标签数据,shape=[n_samples,1]
    """
    # 均匀采样
    # 使用torch.rand在生成sample_num个随机数,这些数范围在interval[0]到interval[1]之间,并组成一个张量
    X = tc.rand(sample_num) * (interval[1] - interval[0]) + interval[0]
    y = func(X)

    # 生成高斯分布的标签噪声
    # 使用torch.normal生成0均值,noise标准差的数据
    epsilon = tc.normal(0, noise, size=y.shape)
    y = y + epsilon

    if add_outlier:  # 生成额外的异常点
        outlier_num = int(len(y) * outlier_ratio)
        if outlier_num != 0:
            # 使用torch.randint生成服从均匀分布的、范围在[0, len(y))的随机Tensor
            outlier_idx = tc.randint(outlier_num, (0, len(y)))
            y[outlier_idx] = y[outlier_idx] * 5
    return X, y


func = linear_func
interval = (-10, 10)
train_num = 100  # 训练样本数目
test_num = 50  # 测试样本数目
noise = 2
add_outlier = False
outlier_ratio = 0.001
X_train, y_train = create_toy_data(func, interval, train_num, noise, add_outlier, outlier_ratio)
X_test, y_test = create_toy_data(func, interval, test_num, noise, add_outlier, outlier_ratio)
X_train_large, y_train_large = create_toy_data(func, interval, 5000, noise, add_outlier, outlier_ratio)

# paddle.linspace返回一个Tensor,Tensor的值为在区间start和stop上均匀间隔的num个值,输出Tensor的长度为num
X_underlying = tc.linspace(interval[0], interval[1], train_num)  # 从interval[0]开始,到interval[1]结束,均匀生成train_num个点组成一个数组
y_underlying = linear_func(X_underlying)

# 绘制数据
plt.scatter(X_train, y_train, marker='*', color='r', s=20, label="train data")
plt.scatter(X_test, y_test, color='y', s=20, label="test data")
plt.plot(X_underlying, y_underlying, c='k', label=r"underlying distribution")
plt.legend(fontsize='x-large')  # 给图像加图例
# plt.savefig('ml-vis.pdf')  # 保存图像到PDF文件中
plt.show()

运行结果如下:
在这里插入图片描述
红色星星代表的是训练集,黄色圆圈代表的是测试集。可以看到,训练集在直线上下浮动,测试集也在直线上下浮动,这正是我们想要的结果。

2.2.2 模型构建

在这里插入图片描述
在实践中,为了提高预测样本的效率,我们通常会将N样本归为一组进行成批地预测,这样可以更好地利用GPU设备的并行计算能力。
在这里插入图片描述
其中X为N个样本的特征矩阵,y为N个预测值组成的列向量。

注意:在实践中,样本的矩阵X是由N个x行向量组成。

import torch as tc

tc.manual_seed(11)  # 设置随机种子


# 线性算子
class Linear():
    def __init__(self, input_size):
        """
        输入:
           - input_size:模型要处理的数据特征向量长度
        """

        self.input_size = input_size

        # 模型参数
        self.params = {}
        self.params['w'] = tc.randn(self.input_size, 1, dtype=tc.float32)
        self.params['b'] = tc.zeros(1, dtype=tc.float32)

    def __call__(self, X):
        return self.forward(X)

    # 前向函数
    def forward(self, X):
        """
        输入:
           - X: tensor, shape=[N,D]
           注意这里的X矩阵是由N个x向量的转置拼接成的,与原教材行向量表示方式不一致
        输出:
           - y_pred: tensor, shape=[N]
        """
        N, D = X.shape

        if self.input_size == 0:
            return tc.full((N, 1), fill_value=self.params['b'])

        assert D == self.input_size  # 输入数据维度合法性验证
        # 使用paddle.matmul计算两个tensor的乘积
        y_pred = tc.matmul(X, self.params['w']) + self.params['b']
        return y_pred


input_size = 3
N = 2
X = tc.randn(N, input_size, dtype=tc.float32)  # 生成2个维度为3的数据
model = Linear(input_size)
y_pred = model(X)
print("y_pred:", y_pred)  # 输出结果的个数也是2个

输出结果如下:
在这里插入图片描述

2.2.3 损失函数

回归任务是对连续值的预测,希望模型能根据数据的特征输出一个连续值作为预测值。因此回归任务中常用的评估指标是均方误差
在这里插入图片描述

import torch as tc


def mean_squared_error(y_true, y_pred):
    """
    输入:
       - y_true: tensor,样本真实标签
       - y_pred: tensor, 样本预测标签
    输出:
       - error: float,误差值
    """

    assert y_true.shape[0] == y_pred.shape[0]

    # tc.square计算输入的平方值
    # tc.mean沿 axis 计算 x 的平均值,默认axis是None,则对输入的全部元素计算平均值。
    error = tc.mean(tc.square(y_true - y_pred))/2

    return error


# 构造一个简单的样例进行测试:[N,1], N=2
y_true = tc.tensor([[-0.2], [4.9]], dtype=tc.float32)
y_pred = tc.tensor([[1.3], [2.5]], dtype=tc.float32)

error = mean_squared_error(y_true=y_true, y_pred=y_pred).item()
print("error:", error)

输出结果如下:
在这里插入图片描述

2.2.4 模型优化

在这里插入图片描述

def optimizer_lsm(model, X, y, reg_lambda=0):
    """
      输入:
         - model: 模型
         - X: tensor, 特征数据,shape=[N,D]
         - y: tensor,标签数据,shape=[N]
         - reg_lambda: float, 正则化系数,默认为0
      输出:
         - model: 优化好的模型
      """

    N, D = X.shape

    # 对输入特征数据所有特征向量求平均
    x_bar_tran = tc.mean(X, axis=0).T

    # 求标签的均值,shape=[1]
    y_bar = tc.mean(y)

    # tc.subtract通过广播的方式实现矩阵减向量
    x_sub = tc.subtract(X, x_bar_tran)

    # 使用tc.all判断输入tensor是否全0
    if tc.all(x_sub) == 0:
        model.params['b'] = y_bar
        model.params['w'] = tc.zeros(D)
        return model

    # tc.inverse求方阵的逆
    tmp = tc.inverse(tc.matmul(x_sub.T, x_sub) + reg_lambda * tc.eye(D))

    w = tc.matmul(tc.matmul(tmp, x_sub.T), (y - y_bar))

    b = y_bar - tc.matmul(x_bar_tran, w)

    model.params['b'] = b
    model.params['w'] = tc.squeeze(w, axis=-1)

    return model

2.2.5 模型训练

在准备了数据、模型、损失函数和参数学习的实现之后,我们开始模型的训练。在回归任务中,模型的评价指标和损失函数一致,都为均方误差。

通过上文实现的线性回归类来拟合训练数据,并输出模型在训练集上的损失。

input_size = 1
model = Linear(input_size)
model = optimizer_lsm(model,X_train.reshape([-1,1]),y_train.reshape([-1,1]))
print("w_pred:",model.params['w'].item(), "b_pred: ", model.params['b'].item())

y_train_pred = model(X_train.reshape([-1,1])).squeeze()
train_error = mean_squared_error(y_true=y_train, y_pred=y_train_pred).item()
print("train error: ",train_error)

运行结果如下:
在这里插入图片描述

model_large = Linear(input_size)
model_large = optimizer_lsm(model_large,X_train_large.reshape([-1,1]),y_train_large.reshape([-1,1]))
print("w_pred large:",model_large.params['w'].item(), "b_pred large: ", model_large.params['b'].item())

y_train_pred_large = model_large(X_train_large.reshape([-1,1])).squeeze()
train_error_large = mean_squared_error(y_true=y_train_large, y_pred=y_train_pred_large).item()
print("train error large: ",train_error_large)

运行结果如下:
在这里插入图片描述

2.2.6 模型评估

下面用训练好的模型预测一下测试集的标签,并计算在测试集上的损失。

y_test_pred = model(X_test.reshape([-1,1])).squeeze()
test_error = mean_squared_error(y_true=y_test, y_pred=y_test_pred).item()
print("test error: ",test_error)

运行结果如下:
在这里插入图片描述

y_test_pred_large = model_large(X_test.reshape([-1,1])).squeeze()
test_error_large = mean_squared_error(y_true=y_test, y_pred=y_test_pred_large).item()
print("test error large: ",test_error_large)

运行结果如下:
在这里插入图片描述

2.2.7 样本数量 & 正则化系数

(1) 调整训练数据的样本数量,由 100 调整到 5000,观察对模型性能的影响。

(2) 调整正则化系数,观察对模型性能的影响。

2.3 多项式回归

在这里插入图片描述
(借老师个图)

2.3.1 数据集构建

假设我们要拟合的非线性函数为一个缩放后的sin函数。

构建训练和测试数据,其中:
训练数样本 15 个,测试样本 10 个,高斯噪声标准差为 0.1,自变量范围为 (0,1)。

import torch as tc
from matplotlib import pyplot as plt  # matplotlib 是 Python 的绘图库
import math
from random import *

# sin函数: sin(2 * pi * x)
def sin(x):
    y = tc.sin(2 * math.pi * x, )
    return y

def create_toy_data(func, interval, sample_num, noise, add_outlier, outlier_ratio):
    """
    根据给定的函数,生成样本
    输入:
       - func:函数
       - interval: x的取值范围
       - sample_num: 样本数目
       - noise: 噪声均方差
       - add_outlier:是否生成异常值
       - outlier_ratio:异常值占比
    输出:
       - X: 特征数据,shape=[n_samples,1]
       - y: 标签数据,shape=[n_samples,1]
    """
    # 均匀采样
    # 使用torch.rand在生成sample_num个随机数,这些数范围在interval[0]到interval[1]之间,并组成一个张量
    X = tc.rand(sample_num) * (interval[1] - interval[0]) + interval[0]
    y = func(X)

    # 生成高斯分布的标签噪声
    # 使用torch.normal生成0均值,noise标准差的数据
    epsilon = tc.normal(0, noise, size=y.shape)
    y = y + epsilon

    if add_outlier:  # 生成额外的异常点
        outlier_num = int(len(y) * outlier_ratio)
        if outlier_num != 0:
            # 使用torch.randint生成服从均匀分布的、范围在[0, len(y))的随机Tensor
            outlier_idx = tc.randint(outlier_num, (0, len(y)))
            y[outlier_idx] = y[outlier_idx] * 5
    return X, y


# 生成数据
func = sin
interval = (0, 1)
train_num = 15
test_num = 10
noise = 0.5  # 0.1
add_outlier = False
outlier_ratio = 0.001
X_train, y_train = create_toy_data(func, interval, train_num, noise, add_outlier, outlier_ratio)
X_test, y_test = create_toy_data(func, interval, test_num, noise, add_outlier, outlier_ratio)

X_underlying = tc.linspace(interval[0], interval[1], train_num)
y_underlying = sin(X_underlying)

# 绘制图像
plt.rcParams['figure.figsize'] = (8.0, 6.0)
plt.scatter(X_train, y_train, color='y', s=20, label="train data")
plt.scatter(X_test, y_test, color="r", s=20, label="test data")
plt.plot(X_underlying, y_underlying, c='#000000', label=r"$\sin(2\pi x)$")
plt.legend(fontsize='x-large')
plt.savefig('ml-vis2.pdf')
plt.show()

运行结果如下:
在这里插入图片描述
我们可以看到训练集数据点在sin图像上下波动,这正是我们想要的结果。

这里这条sin(2Πx)函数并不是很光滑,因为步长太大的缘故,我这里取得是训练集中样点的个数来分段,可以将X_underlying的取值细化,这样得出来的图像就平滑许多了。

2.3.2 模型构建

通过多项式的定义可以看出,多项式回归和线性回归一样,同样学习参数w,只不过需要对输入特征ϕ(x)根据多项式阶数进行变换。因此,我们可以套用求解线性回归参数的方法来求解多项式回归参数。
首先,我们实现 多项式基函数 polynomial_basis_function对原始特征x进行转换。

# 多项式转换
def polynomial_basis_function(x, degree):
    """
    输入:
       - x: tensor, 输入的数据,shape=[N,1]
       - degree: int, 多项式的阶数
       example Input: [[2], [3], [4]], degree=2
       example Output: [[2^1, 2^2], [3^1, 3^2], [4^1, 4^2]]
       注意:本案例中,在degree>=1时不生成全为1的一列数据;degree为0时生成形状与输入相同,全1的Tensor
    输出:
       - x_result: tensor
    """

    if degree == 0:
        return tc.ones(x.shape, dtype=tc.float32)

    x_tmp = x
    x_result = x_tmp

    for i in range(2, degree + 1):
        x_tmp = tc.multiply(x_tmp, x)  # 逐元素相乘
        x_result = tc.concat((x_result, x_tmp), dim=-1)

    return x_result


# 简单测试
data = [[2], [3], [4]]
X = tc.tensor(data=data, dtype=tc.float32)
degree = 3
transformed_X = polynomial_basis_function(X, degree)
print("转换前:", X)
print("阶数为", degree, "转换后:", transformed_X)

输出结果如下:
在这里插入图片描述

2.3.3 模型训练

对于多项式回归,我们可以同样使用前面线性回归中定义的LinearRegression算子、训练函数train、均方误差函数mean_squared_error。拟合训练数据的目标是最小化损失函数,同线性回归一样,也可以通过矩阵运算直接求出 w 的值。

我们设定不同的多项式阶,M的取值分别为0、1、3、8,之前构造的训练集上进行训练,观察样本数据对sin⁡曲线的拟合结果。

plt.rcParams['figure.figsize'] = (12.0, 8.0)

for i, degree in enumerate([0, 1, 3, 8]):  # []中为多项式的阶数
    model = Linear(degree)
    X_train_transformed = polynomial_basis_function(X_train.reshape([-1, 1]), degree)
    X_underlying_transformed = polynomial_basis_function(X_underlying.reshape([-1, 1]), degree)

    model = optimizer_lsm(model, X_train_transformed, y_train.reshape([-1, 1]))  # 拟合得到参数

    y_underlying_pred = model(X_underlying_transformed).squeeze()

    print(model.params)

    # 绘制图像
    plt.subplot(2, 2, i + 1)
    plt.scatter(X_train, y_train, facecolor="none", edgecolor='#e4007f', s=50, label="train data")
    plt.plot(X_underlying, y_underlying, c='#000000', label=r"$\sin(2\pi x)$")
    plt.plot(X_underlying, y_underlying_pred, c='#f19ec2', label="predicted function")
    plt.ylim(-2, 1.5)
    plt.annotate("M={}".format(degree), xy=(0.95, -1.4))

# plt.legend(bbox_to_anchor=(1.05, 0.64), loc=2, borderaxespad=0.)
plt.legend(loc='lower left', fontsize='x-large')
plt.savefig('ml-vis3.pdf')
plt.show()

输出结果如下:
在这里插入图片描述

2.3.4 模型评估

通过均方误差来衡量训练误差、测试误差以及在没有噪音的加入下sin函数值与多项式回归值之间的误差,更加真实地反映拟合结果。多项式分布阶数从0到8进行遍历。

对于模型过拟合的情况,可以引入正则化方法,通过向误差函数中添加一个惩罚项来避免系数倾向于较大的取值。

下面通过均方误差来衡量训练误差、测试误差以及在没有噪音的加入下sin函数值与多项式回归值之间的误差,更加真实地反映拟合结果。多项式分布阶数从0到8进行遍历。

# 训练误差和测试误差
training_errors = []
test_errors = []
distribution_errors = []

# 遍历多项式阶数
for i in range(9):
    model = Linear(i)

    X_train_transformed = polynomial_basis_function(X_train.reshape([-1, 1]), i)
    X_test_transformed = polynomial_basis_function(X_test.reshape([-1, 1]), i)
    X_underlying_transformed = polynomial_basis_function(X_underlying.reshape([-1, 1]), i)

    optimizer_lsm(model, X_train_transformed, y_train.reshape([-1, 1]))

    y_train_pred = model(X_train_transformed).squeeze()
    y_test_pred = model(X_test_transformed).squeeze()
    y_underlying_pred = model(X_underlying_transformed).squeeze()

    train_mse = mean_squared_error(y_train, y_train_pred).item()
    training_errors.append(train_mse)

    test_mse = mean_squared_error(y_test, y_test_pred).item()
    test_errors.append(test_mse)

    # distribution_mse = mean_squared_error(y_true=y_underlying, y_pred=y_underlying_pred).item()
    # distribution_errors.append(distribution_mse)

print("train errors: \n", training_errors)
print("test errors: \n", test_errors)
# print ("distribution errors: \n", distribution_errors)

# 绘制图片
plt.rcParams['figure.figsize'] = (8.0, 6.0)
plt.plot(training_errors, '-.', mfc="none", mec='#e4007f', ms=10, c='#e4007f', label="Training")
plt.plot(test_errors, '--', mfc="none", mec='#f19ec2', ms=10, c='#f19ec2', label="Test")
# plt.plot(distribution_errors, '-', mfc="none", mec="#3D3D3F", ms=10, c="#3D3D3F", label="Distribution")
plt.legend(fontsize='x-large')
plt.xlabel("degree")
plt.ylabel("MSE")
plt.savefig('ml-mse-error.pdf')
plt.show()

运行结果如下:
在这里插入图片描述
观察可视化结果:

  • 当阶数较低的时候,模型的表示能力有限,训练误差和测试误差都很高,代表模型欠拟合;

  • 当阶数较高的时候,模型表示能力强,但将训练数据中的噪声也作为特征进行学习,一般情况下训练误差继续降低而测试误差显著升高,代表模型过拟合。

对于模型过拟合的情况,可以引入正则化方法,通过向误差函数中添加一个惩罚项来避免系数倾向于较大的取值。下面加入l2正则化项,查看拟合结果。

degree = 8 # 多项式阶数
reg_lambda = 0.0001 # 正则化系数

X_train_transformed = polynomial_basis_function(X_train.reshape([-1,1]), degree)
X_test_transformed = polynomial_basis_function(X_test.reshape([-1,1]), degree)
X_underlying_transformed = polynomial_basis_function(X_underlying.reshape([-1,1]), degree)

model = Linear(degree)

optimizer_lsm(model,X_train_transformed,y_train.reshape([-1,1]))

y_test_pred=model(X_test_transformed).squeeze()
y_underlying_pred=model(X_underlying_transformed).squeeze()

model_reg = Linear(degree)

optimizer_lsm(model_reg,X_train_transformed,y_train.reshape([-1,1]),reg_lambda=reg_lambda)

y_test_pred_reg=model_reg(X_test_transformed).squeeze()
y_underlying_pred_reg=model_reg(X_underlying_transformed).squeeze()

mse = mean_squared_error(y_test, y_test_pred).item()
print("mse:",mse)
mes_reg = mean_squared_error(y_test, y_test_pred_reg).item()
print("mse_with_l2_reg:",mes_reg)

# 绘制图像
plt.scatter(X_train, y_train, facecolor="none", edgecolor="#e4007f", s=50, label="train data")
plt.plot(X_underlying, y_underlying, c='#000000', label=r"$\sin(2\pi x)$")
plt.plot(X_underlying, y_underlying_pred, c='#e4007f', linestyle="--", label="$deg. = 8$")
plt.plot(X_underlying, y_underlying_pred_reg, c='#f19ec2', linestyle="-.", label="$deg. = 8, \ell_2 reg$")
plt.ylim(-1.5, 1.5)
plt.annotate("lambda={}".format(reg_lambda), xy=(0.82, -1.4))
plt.legend(fontsize='large')
plt.savefig('ml-vis4.pdf')
plt.show()

运行结果如下:
加粗样式在这里插入图片描述
观察可视化结果,其中浅红色曲线为加入l2正则后多项式分布拟合结果,红色曲线为未加入l2正则的拟合结果,浅红色曲线的拟合效果明显好于红色曲线。

2.4 Runner类介绍

机器学习方法流程包括数据集构建、模型构建、损失函数定义、优化器、模型训练、模型评价、模型预测等环节。

为了更方便地将上述环节规范化,我们将机器学习模型的基本要素封装成一个Runner类。

除上述提到的要素外,再加上模型保存、模型加载等功能。

Runner类的成员函数定义如下:

  • __init__函数:实例化Runner类,需要传入模型、损失函数、优化器和评价指标等;
  • train函数:模型训练,指定模型训练需要的训练集和验证集;
  • evaluate函数:通过对训练好的模型进行评价,在验证集或测试集上查看模型训练效果;
  • predict函数:选取一条数据对训练好的模型进行预测;
  • save_model函数:模型在训练过程和训练结束后需要进行保存;
  • load_model函数:调用加载之前保存的模型。
    在这里插入图片描述
    (借老师一个图)
class Runner():
    def __init__(self,model,model_loss,model_optimizer,model_evaluate):
        self.model = model
        self.model_loss = model_loss
        self.model_optimizer = model_optimizer
        self.model_evaluate = model_evaluate
    def train(self,Train_feature,Test_feature,**kwargs):
        self.Train_feature = Train_feature
        pass
        return #各个参数
    def evaluate(self,label,**kwargs):
        loss = self.model_loss(label,self.predict(self.Train_feature))
        # accuracy =
        pass
        return #返回精度和误差
    def predict(self,X,**kwargs):
        #用train 的各个参数来对输入序列X进行预测,返回预测值
        pass
        return #返回预测值
    def save_model(self,save_path):
        pass
    def load_model(self,model_path):
        pass

2.5 基于线性回归的波士顿房价预测

使用线性回归来对马萨诸塞州波士顿郊区的房屋进行预测。

实验流程主要包含如下5个步骤:

数据处理:包括数据清洗(缺失值和异常值处理)、数据集划分,以便数据可以被模型正常读取,并具有良好的泛化性;
模型构建:定义线性回归模型类;
训练配置:训练相关的一些配置,如:优化算法、评价指标等;
组装训练框架Runner:Runner用于管理模型训练和测试过程;
模型训练和测试:利用Runner进行模型训练和测试。

2.5.1 数据处理

2.5.1.1 数据清洗

仿佛是第一次听说这个词。。搜索后才有些眉目。这里附上该博主的链接数据清洗

2.5.1.1.1 重复观测处理
import pandas as pd # 开源数据分析和操作工具


# 利用pandas加载波士顿房价的数据集
data = pd.read_csv("boston_house_prices.csv")
print("是否存在重复值:", any(data.duplicated()))
data.drop_duplicates(inplace=True)
data.to_csv('boston_house_prices.csv', index=False)   # 保存移除重复值后的数据集

运行结果如下:
在这里插入图片描述

2.5.1.1.2 缺失值处理
print("查看各个属性的缺失值:\n", data.isna().sum())

输出结果如下:
在这里插入图片描述
由此可以看到,该数据库无缺失值。

2.5.1.1.3 异常值处理

异常值是指那些远离正常值的观测值,异常值的出现会给模型的常见和预测产生严重的后果,但有时也会利用异常值进行异常数据查找。
对于异常值的检测,一般采用两种方法,一种是标准差法,另一种是箱线图判别法。标准差法的判别公式是outlier > x+nδ 或者outlier < x-nδ,其中x为样本均值,δ为样本标准差。当n=2时,满足条件的观测就是异常值;当n=3时,满足条件的观测就是极端异常值。箱线图的判别公式是outlier > Q3+nIQR 或者outlier < Q1-nIQR,其中Q1为下四分位数,Q3为上四分位数,IQR为上四分位数和下四分位数的差,当n=1.5时,满足条件的观测为异常值,当n=3时,满足条件的观测为极端异常值。

箱线图介绍:
在这里插入图片描述

# 箱线图查看异常值分布
def boxplot(data, fig_name):
    # 绘制每个属性的箱线图
    data_col = list(data.columns)

    # 连续画几个图片
    plt.figure(figsize=(5, 5), dpi=300)
    # 子图调整
    plt.subplots_adjust(wspace=0.6)
    # 每个特征画一个箱线图
    for i, col_name in enumerate(data_col):
        plt.subplot(3, 5, i + 1)
        # 画箱线图
        plt.boxplot(data[col_name],
                    showmeans=True,
                    meanprops={"markersize": 1, "marker": "D", "markeredgecolor": '#f19ec2'},  # 均值的属性
                    medianprops={"color": '#e4007f'},  # 中位数线的属性
                    whiskerprops={"color": '#e4007f', "linewidth": 0.4, 'linestyle': "--"},
                    flierprops={"markersize": 0.4},
                    )
        # 图名
        plt.title(col_name, fontdict={"size": 5}, pad=2)
        # y方向刻度
        plt.yticks(fontsize=4, rotation=90)
        plt.tick_params(pad=0.5)
        # x方向刻度
        plt.xticks([])
    plt.savefig(fig_name)
    plt.show()


boxplot(data, 'ml-vis5.pdf')

在这里插入图片描述
由图可以直观的看出,数据中存在很多的异常值,即超出上下两条杠的部分中的黑圆圈,我们将这些异常值认为是数据集中的“噪声”,并将临界值取代噪声点,从而完成对数据集异常值的处理。

用于替换的代码:

# 四分位处理异常值
num_features = data.select_dtypes(exclude=['object', 'bool']).columns.tolist()

for feature in num_features:
    if feature == 'CHAS':
        continue

    Q1 = data[feature].quantile(q=0.25)  # 下四分位
    Q3 = data[feature].quantile(q=0.75)  # 上四分位

    IQR = Q3 - Q1
    top = Q3 + 1.5 * IQR  # 最大估计值
    bot = Q1 - 1.5 * IQR  # 最小估计值
    values = data[feature].values
    values[values > top] = top  # 临界值取代噪声
    values[values < bot] = bot  # 临界值取代噪声
    data[feature] = values.astype(data[feature].dtypes)

# 再次查看箱线图,异常值已被临界值替换(数据量较多或本身异常值较少时,箱线图展示会不容易体现出来)
boxplot(data, 'ml-vis6.pdf')

运行结果如下:
在这里插入图片描述

2.5.1.2 数据集划分

数据集划分为测试集和训练集:

import torch

torch.manual_seed(10)


# 划分训练集和测试集
def train_test_split(X, y, train_percent=0.8):
    n = len(X)
    shuffled_indices = torch.randperm(n)  # 返回一个数值在0到n-1、随机排列的1-D Tensor
    train_set_size = int(n * train_percent)
    train_indices = shuffled_indices[:train_set_size]
    test_indices = shuffled_indices[train_set_size:]

    X = X.values
    y = y.values

    X_train = X[train_indices]
    y_train = y[train_indices]

    X_test = X[test_indices]
    y_test = y[test_indices]

    return X_train, X_test, y_train, y_test


X = data.drop(['MEDV'], axis=1)
y = data['MEDV']

X_train, X_test, y_train, y_test = train_test_split(X, y)  # X_train每一行是个样本,shape[N,D]

2.5.1.3 特征工程

为了消除纲量对数据特征之间影响,在模型训练前,需要对特征数据进行归一化处理,将数据缩放到[0, 1]区间内,使得不同特征之间具有可比性。

import torch
X_train = torch.as_tensor(X_train,dtype=torch.float32)
X_test = torch.as_tensor(X_test,dtype=torch.float32)
y_train = torch.as_tensor(y_train,dtype=torch.float32)
y_test = torch.as_tensor(y_test,dtype=torch.float32)
X_min = torch.min(X_train,axis=0)[0]
X_max = torch.max(X_train,axis=0)[0]
X_train = (X_train-X_min)/(X_max-X_min)
X_test  = (X_test-X_min)/(X_max-X_min)
# 训练集构造
train_dataset=(X_train,y_train)
# 测试集构造
test_dataset=(X_test,y_test)

2.5.2 模型构建

from nndl.op import Linear

# 模型实例化
input_size = 12
model=Linear(input_size)

其中nndl.op代码如下:

import torch
torch.seed()  # 设置随机种子

class Op(object):
    def __init__(self):
        pass

    def __call__(self, inputs):
        return self.forward(inputs)

    def forward(self, inputs):
        raise NotImplementedError

    def backward(self, inputs):
        raise NotImplementedError

# 线性算子
class Linear(Op):
    def __init__(self, dimension):
        """
        输入:
           - dimension:模型要处理的数据特征向量长度
        """

        self.dim = dimension

        # 模型参数
        self.params = {}
        self.params['w'] = torch.randn(self.dim, 1, dtype=torch.float32)
        self.params['b'] = torch.zeros([1], dtype=torch.float32)

    def __call__(self, X):
        return self.forward(X)

    # 前向函数
    def forward(self, X):
        """
        输入:
           - X: tensor, shape=[N,D]
           注意这里的X矩阵是由N个x向量的转置拼接成的,与原教材行向量表示方式不一致
        输出:
           - y_pred: tensor, shape=[N]
        """

        N, D = X.shape

        if self.dim == 0:
            return torch.full([N, 1], fill_value=self.params['b'])
        
        assert D == self.dim  # 输入数据维度合法性验证

        # 使用torch.matmul计算两个tensor的乘积
        y_pred = torch.matmul(X,self.params['w'])+self.params['b']
        
        return y_pred

2.5.3 完善Runner类

在测试集上使用MSE对模型性能进行评估。

import torch.nn as nn
mse_loss = nn.MSELoss()

完整实现如下:

import torch.nn as nn
import torch
import os
from nndl.op import Linear
from nndl.opitimizer import optimizer_lsm
# 模型实例化
input_size = 12
model=Linear(input_size)
mse_loss = nn.MSELoss()



class Runner(object):
    def __init__(self, model, optimizer, loss_fn, metric):
        # 优化器和损失函数为None,不再关注

        # 模型
        self.model = model
        # 评估指标
        self.metric = metric
        # 优化器
        self.optimizer = optimizer

    def train(self, dataset, reg_lambda, model_dir):
        X, y = dataset
        self.optimizer(self.model, X, y, reg_lambda)

        # 保存模型
        self.save_model(model_dir)

    def evaluate(self, dataset, **kwargs):
        X, y = dataset

        y_pred = self.model(X)
        result = self.metric(y_pred, y)

        return result

    def predict(self, X, **kwargs):
        return self.model(X)

    def save_model(self, model_dir):
        if not os.path.exists(model_dir):
            os.makedirs(model_dir)

        params_saved_path = os.path.join(model_dir, 'params.pdtensor')
        torch.save(model.params, params_saved_path)

    def load_model(self, model_dir):
        params_saved_path = os.path.join(model_dir, 'params.pdtensor')
        self.model.params = torch.load(params_saved_path)


optimizer = optimizer_lsm
runner = Runner(model, optimizer=optimizer,loss_fn=None, metric=mse_loss)

2.5.4 模型训练

optimizer = optimizer_lsm
runner = Runner(model, optimizer=optimizer,loss_fn=None, metric=mse_loss)

# 模型保存文件夹
saved_dir = 'D:/models_'

# 启动训练
runner.train(train_dataset,reg_lambda=0,model_dir=saved_dir)
columns_list = data.columns.to_list()
weights = runner.model.params['w'].tolist()
b = runner.model.params['b'].item()

for i in range(len(weights)):
    print(columns_list[i],"weight:",weights[i])

print("b:",b)

运行结果如下:
在这里插入图片描述

2.5.5 模型测试

# 加载模型权重
runner.load_model(saved_dir)
mse = runner.evaluate(test_dataset)
print('MSE:', mse.item())

运行结果如下:
在这里插入图片描述

2.5.6 模型预测

runner.load_model(saved_dir)
pred = runner.predict(X_test[:1])
print("真实房价:",y_test[:1].item())
print("预测的房价:",pred.item())

运行结果如下:
在这里插入图片描述
这里附上optimizer文件

import torch

def optimizer_lsm(model, X, y, reg_lambda=0):
  """
    输入:
       - model: 模型
       - X: tensor, 特征数据,shape=[N,D]
       - y: tensor,标签数据,shape=[N]
       - reg_lambda: float, 正则化系数,默认为0
    输出:
       - model: 优化好的模型
    """

  N, D = X.shape

  # 对输入特征数据所有特征向量求平均
  x_bar_tran = torch.mean(X,axis=0).T 
  
  # 求标签的均值,shape=[1]
  y_bar = torch.mean(y)
  
  # torch.subtract通过广播的方式实现矩阵减向量
  x_sub = torch.subtract(X,x_bar_tran)

  # 使用torch.all判断输入tensor是否全0
  if torch.all(x_sub == 0):
    model.params['b'] = y_bar
    model.params['w'] = torch.zeros(shape=[D])
    return model
  
  # torch.inverse求方阵的逆
  tmp = torch.inverse(torch.matmul(x_sub.T, x_sub) + reg_lambda*torch.eye(D))

  w = torch.matmul(torch.matmul(tmp,x_sub.T),(y-y_bar))
  
  b = y_bar-torch.matmul(x_bar_tran,w)
  
  model.params['b'] = b
  model.params['w'] = torch.squeeze(w,axis=-1)

  return model

from abc import abstractmethod

#新增优化器基类
class Optimizer(object):
    def __init__(self, init_lr, model):
        """
        优化器类初始化
        """
        #初始化学习率,用于参数更新的计算
        self.init_lr = init_lr
        #指定优化器需要优化的模型
        self.model = model

    @abstractmethod
    def step(self):
        """
        定义每次迭代如何更新参数
        """
        pass

#新增梯度下降法优化器
class SimpleBatchGD(Optimizer):
    def __init__(self, init_lr, model):
        super(SimpleBatchGD, self).__init__(init_lr=init_lr, model=model)

    def step(self):
        #参数更新
        #遍历所有参数,按照公式(3.8)和(3.9)更新参数
        if isinstance(self.model.params, dict):
            for key in self.model.params.keys():
                self.model.params[key] = self.model.params[key] - self.init_lr * self.model.grads[key]

问题1:使用类实现机器学习模型的基本要素有什么优点?
答:使用类实现机器学习模型基本要素方便整洁,更容易被人理解。让整体思路更加清晰,优化了许多后续的代码。同时也加强了代码的稳定性和正确性。
问题2:算子op、优化器opitimizer放在单独的文件中,主程序在使用时调用该文件。这样做有什么优点?
答:简化操作,方便备份,以后再用到算子op,优化器opitimizer时不用再写一遍,直接调用该文件就可以了。同时使原代码更简洁,减少了很多空间和时间。
问题3:线性回归通常使用平方损失函数,能否使用交叉熵损失函数?为什么?
答:交叉熵损失函数主要用于离散情况,假设误差是二值分部,平方损失函数是实际值与目标值之间的误差,假设误差服从正态分布。因此线性回归通常使用平方损失函数。

NNDL 实验三
机器学习 实现简单的线性回归方程

  • 4
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

红肚兜

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值