王道机试C++第10章 动态规划dp一下 Day35 初识动态要多练习!

跳到这学完递归和分治,先让我学学动态规划(*^_^*)

第 12 章 动态规划

       动态规划通常用于求解最优解问题, 动态规划算法与分治法类似,其基本思想也是将待求解问题分解成若干子问题,先求解子问题, 然后从这些子问题的解得到原问题的解。与分治法不同的是,适合于用动态规划求解的问题, 经分解得到的子问题往往不是互相独立的。若用分治法来解这类问题,则分解得到的子问题数目太多,有些子问题会被重复计算多次。
       而动态规划的做法是将已解决子问题的答案保存下来,在需要子问题答案的时候便可直接获得,而不需要重复计算,这样就可以避免大量的重复计算, 提高效率。

12.1 递归求解

例:N 阶楼梯上楼问题(华科大)

题目描述:
N 阶楼梯上楼问题:一次可以走两阶或一阶,问有多少种上楼方式(要求采用非递归)。
输入: 输入包括一个整数 N 1<=  N <90 )。
输出: 可能有多组测试数据,对于每组数据,输出当楼梯阶数是 N 时上楼方式的个数。
样例输入:
4
样例输出:
5
思路提示:
代码表示:

1、初级复杂度会很高,有很多是被重复计算的,使用简单递归。

2、写一个预留数组来优化,防止重复被算

3、使用动态规划,除了1和2以外从3开始从小问题直接出手。

#include <bits/stdc++.h>
using namespace std;

//1、普通递归 
int feibo(int n){
	if(n==1||n==2){
		return n;
	}else{
		return feibo(n-1)+feibo(n-2);
	}
}
//2、设置数组来实现记忆化 
int F[100];
int feibo2(int n){//记忆化 
	if(F[n]!=-1){//防止被算多次 
		return F[n];
	}
	if(n==1||n==2){
		F[n]=n;
		return n;
	}else{
		F[n]=feibo2(n-1)+feibo2(n-2);
		return F[n];
	}
}
//3、动态规划 
int dp[100];
int feibo3(int n){
	dp[1]=1;
	dp[2]=2;
	for(int i=3;i<=n;i++){
		dp[i]=dp[i-1]+dp[i-2];
	}
	return dp[n];
}

int main() {
	for(int i=0;i<100;++i){
		F[i]=-1;//如果开始没有被算过先置-1 
	}
    int n;
    while (scanf("%d",&n)!=EOF){
    	//printf("%d",feibo1(n));
    	//printf("%d",feibo2(n));
    	printf("%d",feibo3(n));
	}
    return 0;
}

动态规划总结:


例:最大序列和(清华上机)

题目描述:
给出一个整数序列 S ,其中有 N 个数,定义其中一个非空连续子序列 T 中所有数的和为 T 的“序
列和”。对于 S 的所有非空连续子序列 T ,求最大的序列和。变量条件: N 为正整数, N 1000000
结果序列和在区间 (- 2^ 63 , 2^ 63- 1) 内。
输入: 第一行为一个正整数 N ,第二行为 N 个整数,表示序列中的数。
输出: 输入可能包括多组数据,对于每组输入数据,仅输出一个数,表示最大序列和。
样例输入:
5
1 5 -3 2 4
6
1 -2 3 4 -10 6
4
-3 -1 -2 -5
样例输出:
9
7
-1
代码表示:
#include <bits/stdc++.h>
using namespace std;

#define N 1000000
long long a[1000001];
long long dp[1000001];
long long maxsub(int n){
	long long maximun=-INT_MAX;
	for(int i=0;i<n;++i){
		if(i==0){
			dp[i]=a[i];
		}else{
			dp[i]==max(a[i],a[i]+dp[i-1]);
		}
		maximun=max(maximun,dp[i]);
	}
	return maximun;
}

int main() {
	int n;
	while(scanf("%d",&n)!=EOF){
		for(int i=0;i<n;++i){
			scanf("%lld",&a[i]);
		}
		long long answer=maxsub(n);
		printf("%d",answer);
	}
    return 0;
}
心得体会:

1、代码中的 maxsub 函数使用动态规划的思想来计算给定数组 a 的最大子序列和。动态规划通过将原问题分解为子问题,并利用子问题的解来求解原问题。在这个代码中,dp 数组用于存储以当前位置为结尾的子数组的最大和。dp[i] 表示以第 i 个元素结尾的子数组的最大和。通过遍历数组 a,从头到尾计算每个位置的最大子序列和,并将结果保存在 dp 数组中。

具体计算每个位置的最大子序列和的过程如下:

  • 当 i 等于 0 时,即考虑以第一个元素结尾的子数组,它的最大和就是第一个元素本身,所以 dp[0] = a[0]
  • 当 i 大于 0 时,考虑以当前位置 i 结尾的子数组。有两种情况:
    • 如果将当前元素 a[i] 加入到之前的最大子序列和中能够得到更大的和,那么就将其加入,即 dp[i] = a[i] + dp[i-1]
    • 如果将当前元素 a[i] 加入到之前的最大子序列和中不能得到更大的和,那么就不加入,即 dp[i] = a[i]
  • 在每次计算 dp[i] 的过程中,都维护一个全局变量 maximun 来记录当前的最大子序列和。

最后,遍历完整个数组后,maximun 就存储了整个数组的最大子序列和,函数返回这个最大值。动态规划在这段代码中的作用是通过 dp 数组计算并返回给定数组的最大子序列和。

2、动态规划在算法设计中具有以下好处:

1)提高效率:动态规划可以通过将问题分解为子问题并保存子问题的解来避免重复计算。通过记忆化或者建立动态规划表格,可以避免重复计算子问题,从而大大提高算法的效率。

2)简化问题:动态规划可以将原问题分解为一系列的子问题,使得问题的解决变得更加简单和直观。通过将复杂的问题分解为简单的子问题,可以减少思考和实现的复杂度。

3)解决优化问题:动态规划常用于求解最优化问题,如最大值、最小值等。通过定义状态和状态转移方程,动态规划可以找到问题的最优解。

4)可行性分析:动态规划可用于判断问题是否具有可行解。通过动态规划的状态转移过程,可以判断是否存在满足特定条件的解。

5)算法设计的一种思想:动态规划是一种常用的算法设计思想,可以用于解决多种问题。学习和理解动态规划的思想和方法,有助于培养抽象建模和问题解决的能力。


例:最大上升子序列和(北大上机)

题目描述:
输入:
输入包含多组测试数据。每组测试数据由两行组成。第一行是序列的长度 N 1<=   N <= 1000)。 第二行给出序列中的 N 个整数,这些整数的取值范围都在 0 10000 之间(可能重复)。
输出:
对于每组测试数据,输出其最大上升子序列和。
样例输入:
7
1 7 3 5 9 4 8
样例输出:
18
代码表示:
#include <bits/stdc++.h>
using namespace std;

int a[1010];
int dp[1010];

int main() {
	int n;
	while(scanf("%d",&n)!=EOF){
		for(int i=0;i<n;++i){
			scanf("%d",&a[i]);
		}
		int answer=0;
		for(int i=0;i<n;++i){
			dp[i]=a[i];
			for(int j=0;j<i;++j){
				if(a[j]<a[i]){
					dp[i]=max(dp[i],dp[j]+a[i]);
				}
			}
			answer=max(answer,dp[i]);
		}
		printf("%d",answer);
	}
    return 0;
}

例:最长公共子序列

题目描述:

思路提示:

代码表示: 
#include <bits/stdc++.h>
using namespace std;
#define N 1001
int dp[N][N];

int main() {
	int m,n;
	char s1[N];
	char s2[N];
	scanf("%d%d",&n,&m);
	scanf("%d%d",s1,s2);
		for(int i=0;i<n;++i){
			for(int j=0;j<=m;++j){
			if(i==0||j==0){
				dp[i][j];
				continue;
			}	
			if(s1[i-1]==s2[j-1]){
				dp[i][j]=dp[i-1][j-1]+1;
			}
			else{
				dp[i][j]=max(dp[i][j-1],dp[i-1][j]);
			}
		}
	}
	printf("%d\n",dp[n][m]);
}
心得体会:

dp 数组的作用:使用动态规划解决最长公共子序列问题。

总结代码的执行过程如下:

1、从输入中读取两个整数 n 和 m,分别表示两个字符串的长度。

2、从输入中读取两个字符串 s1 和 s2

3、创建一个二维数组 dp,其中 dp[i][j] 表示字符串 s1 的前 i 个字符和字符串 s2 的前 j 个字符的最长公共子序列的长度。

4、使用双重循环遍历数组 dp,其中外层循环变量 i 从 0 到 n-1,内层循环变量 j 从 0 到 m

5、在每个位置 (i, j) 上,根据以下情况更新 dp[i][j]

1)当 i 或 j 为 0 时,表示一个字符串为空,此时 dp[i][j] 为 0。

2)当 s1[i-1] 等于 s2[j-1] 时,表示当前字符相等,最长公共子序列可以在之前的最长公共子序列的基础上加上这个字符,即 dp[i][j] = dp[i-1][j-1] + 1

3)当 s1[i-1] 不等于 s2[j-1] 时,表示当前字符不相等,最长公共子序列长度取决于之前的最长公共子序列。可以选择舍弃 s1[i-1] 或 s2[j-1] 中的一个字符,即 dp[i][j] = max(dp[i][j-1], dp[i-1][j])

6、循环结束后,dp[n][m] 存储的就是字符串 s1 和 s2 的最长公共子序列的长度。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值