数据分析 | Logistic回归模型

本文深入介绍了Logistic回归模型,包括模型的数学表达式、Logit变换及其作用,以及参数求解过程。通过实例解释了参数的含义,如性别和肿瘤体积对癌症发生比的影响。同时,讨论了模型评估的混淆矩阵和ROC曲线,展示了如何使用sklearn和statsmodels库进行模型构建、预测及评估。最后,提供了模型预测的准确率、正例覆盖率和负例覆盖率等关键指标。
摘要由CSDN通过智能技术生成

一、Logistic回归模型

假定以下回归模型为: z = β 0 + β 1 x 1 + β 2 x 2 + ⋯ + β p x p z=\beta_0+\beta_1x_1+\beta_2x_2+\cdots+\beta_px_p z=β0+β1x1+β2x2++βpxp

则Logit变换为:
g ( z ) = 1 1 + e − ( β 0 + β 1 x 1 + β 2 x 2 + ⋯ + β p x p ) = h β ( X ) g(z)=\frac{1}{1+e^{-(\beta_0+\beta_1x_1+\beta_2x_2+\cdots+\beta_px_p)}}=h_\beta(X) g(z)=1+e(β0+β1x1+β2x2++βpxp)1=hβ(X)
上式中的 h β ( X ) h_\beta(X) hβ(X)也被称为Logistic回归模型,它是将线性回归模型的预测值经过非线性的Logit函数转换为[0,1]之间的概率值。

Logit函数使得原本 z ∈ ( − ∞ , + ∞ ) z\in(-\infin,+\infin) z(,+)的值,限制在 ( 0 , 1 ) (0,1) (0,1)之间,从而进行概率分类。下图是Logit函数 g ( z ) = 1 1 + e − z g(z)=\frac{1}{1+e^{-z}} g(z)=1+ez1函数图像

img

01 模型变换

条件概率,y取值为1时的概率: P ( y = 1 ∣ X ; β ) = h β ( X ) = p P(y=1|X;\beta)=h_\beta(X)=p P(y=1X;β)=hβ(X)=p

条件概率,y取值为0时的概率: P ( y = 0 ∣ X ; β ) = 1 − h β ( X ) = 1 − p P(y=0|X;\beta)=1-h_\beta(X)=1-p P(y=0X;β)=1hβ(X)=1p

则两个概率的商为:
p 1 − p = h β ( X ) 1 − h β ( X ) = e β 0 + β 1 x 1 + β 2 x 2 + ⋯ + β p x p \frac{p}{1-p}=\frac{h_\beta(X)}{1-h

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Ouroboroszzs

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值