一、Logistic回归模型
假定以下回归模型为: z = β 0 + β 1 x 1 + β 2 x 2 + ⋯ + β p x p z=\beta_0+\beta_1x_1+\beta_2x_2+\cdots+\beta_px_p z=β0+β1x1+β2x2+⋯+βpxp
则Logit变换为:
g ( z ) = 1 1 + e − ( β 0 + β 1 x 1 + β 2 x 2 + ⋯ + β p x p ) = h β ( X ) g(z)=\frac{1}{1+e^{-(\beta_0+\beta_1x_1+\beta_2x_2+\cdots+\beta_px_p)}}=h_\beta(X) g(z)=1+e−(β0+β1x1+β2x2+⋯+βpxp)1=hβ(X)
上式中的 h β ( X ) h_\beta(X) hβ(X)也被称为Logistic回归模型,它是将线性回归模型的预测值经过非线性的Logit函数转换为[0,1]之间的概率值。
Logit函数使得原本 z ∈ ( − ∞ , + ∞ ) z\in(-\infin,+\infin) z∈(−∞,+∞)的值,限制在 ( 0 , 1 ) (0,1) (0,1)之间,从而进行概率分类。下图是Logit函数 g ( z ) = 1 1 + e − z g(z)=\frac{1}{1+e^{-z}} g(z)=1+e−z1函数图像
01 模型变换
条件概率,y取值为1时的概率: P ( y = 1 ∣ X ; β ) = h β ( X ) = p P(y=1|X;\beta)=h_\beta(X)=p P(y=1∣X;β)=hβ(X)=p
条件概率,y取值为0时的概率: P ( y = 0 ∣ X ; β ) = 1 − h β ( X ) = 1 − p P(y=0|X;\beta)=1-h_\beta(X)=1-p P(y=0∣X;β)=1−hβ(X)=1−p
则两个概率的商为:
p 1 − p = h β ( X ) 1 − h β ( X ) = e β 0 + β 1 x 1 + β 2 x 2 + ⋯ + β p x p \frac{p}{1-p}=\frac{h_\beta(X)}{1-h